首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   6篇
  国内免费   61篇
安全科学   2篇
废物处理   3篇
环保管理   19篇
综合类   99篇
基础理论   47篇
污染及防治   69篇
评价与监测   16篇
社会与环境   1篇
  2023年   5篇
  2022年   8篇
  2021年   8篇
  2020年   7篇
  2019年   4篇
  2018年   11篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   18篇
  2012年   17篇
  2011年   18篇
  2010年   10篇
  2009年   13篇
  2008年   22篇
  2007年   21篇
  2006年   14篇
  2005年   12篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   7篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有256条查询结果,搜索用时 234 毫秒
91.
N-Nitrosodimethylamine (NDMA) is a potent carcinogen that yields a cancer risk of 10−6 at concentrations as low as 0.7 ng L−1. Tentative guideline values are set at 3 ng L−1 in California, USA; 9 ng L−1 in Ontario, Canada; 40 ng L−1 nationwide in Canada; and 100 ng L−1 by the World Health Organization. NDMA is a great concern in treating reclaimed water as well as drinking water. UV degradation can be considered effective degradation method. A 1-log reduction of NDMA is achieved by 1000 mJ cm−2 of a 254-nm low pressure (LP) mercury UV lamp. However, a higher degradation efficiency than that provided by LP lamps is desired in practical treatment. In this study, the effects of wavelength and water quality were investigated to achieve higher degradation efficiency. The effects of wavelength were examined by comparing three UV lamps: a 222-nm Kr Cl Excimer UV lamp, a 254-nm LP mercury UV lamp, and a 230- to 270-nm filtered medium pressure (FMP) mercury UV lamp. The 222-nm lamp and FMP lamp achieved 4 times and 2.8 times higher degradation efficiency, respectively, than the conventional 254-nm LP lamp. Effects on water quality were also simulated by using absorption spectrum data of nitrate solutions and process water from a drinking-water treatment plant. In the simulation, the 222-nm lamp was affected by UV-absorbing compounds in the water, whereas the FMP lamp showed more stable degradation efficiency. Appropriate use of these three types of lamps could enhance the efficiency of degradation of NDMA.  相似文献   
92.
We examined root hydraulic conductivity (Lp) responses of one-year-old seedlings of four conifers to the combined effects of elevated CO2 and inorganic nitrogen (N) sources. We found marked interspecific differences in Lp responses to high CO2 ranging from a 37% increase in P. abies to a 27% decrease in P. menziesii, but these effects depended on N source. The results indicate that CO2 effects on root water transport may be coupled to leaf area responses under nitrate (NO3), but not ammonium (NH4+) dominated soils. To our knowledge, this is the first study that highlights the role of inorganic N source and species identity as critical factors that determine plant hydraulic responses to rising atmospheric CO2 levels. The results have important implications for understanding root biology in a changing climate and for models designed to predict feedbacks between rising atmospheric CO2, N deposition, and ecohydrology.  相似文献   
93.
A Nitrate-N Leaching Index (NLI) is calculated and the results indicate that nitrogen loss in the study area occurs through both leaching and surface runoff. A non-linear regression model of trapping efficiency was combined with a first order decay model to examine the impact of soil characteristics, slope, vegetative cover, land use and distance to streams on the spatial pattern of non-point source nitrogen inputs to streams. The model evaluates the statistical significance of each landscape factor and provides an easy interpretation of the landscape delivery ratio of nitrogen based on a pixel-based characterisation of the watershed. The model was validated by comparing the distributions of the observed and estimated monthly nitrogen concentrations. The exploratory GIS-based method presented here can improve the understanding of the impact of landscape characteristics on nitrate-nitrogen contributing areas and therefore assist watershed management efforts.  相似文献   
94.
The weights of evidence (WofE) modeling technique has been used to analyze both natural and anthropogenic factors influencing the occurrence of high nitrate concentrations in groundwater resources located in the central part of the Po Plain (Northern Italy). The proposed methodology applied in the Lodi District combines measurements of nitrate concentrations, carried out by means of a monitoring net of 69 wells, with spatial data representing both categorical and numerical variables. These variables describe either potential sources of nitrate and the relative ease with which it may migrate towards groundwater. They include population density, nitrogen fertilizer loading, groundwater recharge, soil protective capacity, vadose zone permeability, groundwater depth, and saturated zone permeability. Once conditional dependence problems among factors have been solved and validation tests performed, the statistical approach has highlighted negative and positive correlations between geoenvironmental factors and nitrate concentration in groundwater. These results have been achieved analysing the calculated statistical parameters (weights, contrasts, normalized contrasts) of each class by which each factor has been previously subdivided. This has permitted to outline: the overall influence each factor has on the presence/absence of nitrate; the range of their values mostly influencing this presence/absence; the most and least critical combination of factor classes existing in each specific zone; areas where the influence of impacting factor classes is reduced by the presence of not impacting factor classes. This last aspect could represent an important support for a correct land use management to preserve groundwater quality.  相似文献   
95.
During the last 50 years nitrate concentrations in Buttermere and Wastwater (Cumbria, UK) have risen significantly, by 70 and 100%, respectively. By estimating contemporary nitrate fluxes in the lakes' catchments and in sub-catchments and comparing them with the fractional areas of different soil types, it is deduced that the surface water nitrate is derived almost entirely from organic-rich ranker soils that have a limited ability to retain atmospherically-deposited nitrogen. Little or no nitrate leaches from the other major soil type, a brown podzol, despite it having a lower C:N ratio (12.0 g g(-1)) than the ranker (17.0 g g(-1)), nor is there much contribution from the small areas of improved (chemically fertilised) grassland within the catchments. Although some nitrate leaching is occurring, total N losses are appreciably smaller than atmospheric inputs, so the catchment soils are currently accumulating between 3 and 4 g N m(-2) a(-1).  相似文献   
96.
We analyze trends of some nitrogen compounds using long-term measurements and results from the EMEP (co-operative programme for monitoring and evaluation of the long-range transmissions of air pollutants in Europe) chemical transport model at EMEP sites. We find statistically significant declines at the majority of sites for NH(x) (sum of ammonia and ammonium) in air and for nitrate and ammonium in precipitation, but only at a few sites for xNO3 (sum of nitrate and nitric acid) in air. Model calculations and measurements give similar results. We demonstrate that the lack of trends for xNO3 in air at least partly can be attributed to a shift in the equilibrium between nitric acid and ammonium nitrate towards particulate phase, caused by reductions in the sulfur dioxide emissions.  相似文献   
97.
Needles of 20-year-old Scots pine (Pinus sylvestris L.) saplings were studied in an ultraviolet (UV) exclusion field experiment (from 2000 to 2002) in northern Finland (67 °N). The chambers held filters that excluded both UV-B and UV-A, excluded UV-B only, transmitted all UV (control), or lacked filters (ambient). UV-B/UV-A exclusion decreased nitrate reductase (NR) activity of 1-year-old needles of Scots pines compared to the controls. The proportion of free amino acids varied in the range 1.08-1.94% of total proteins, and was significantly higher in needles of saplings grown under UV-B/UV-A exclusion compared to the controls or UV-B exclusion. NR activity correlated with air temperature, indicating a “chamber effect”. The study showed that both UV irradiance and increasing temperature are significant modulators of nitrogen (N) metabolism in Scots pine needles.  相似文献   
98.
BACKGROUND, AIM, AND SCOPE: The subsurface at the Oak Ridge Field Research Center represents an extreme and diverse geochemical environment that places different stresses on the endogenous microbial communities, including low pH, elevated nitrate concentrations, and the occurrence of heavy metals and radionuclides, including hexavalent uranium [U(VI)]. The in situ immobilization of U(VI) in the aquifer can be achieved through microbial reduction to relatively insoluble U(IV). However, a high redox potential due to the presence of nitrate and the toxicity of heavy metals will impede this process. Our aim is to test biostimulation of the endogenous microbial communities to improve nitrate reduction and subsequent U(VI) reduction under conditions of elevated heavy metals. MATERIALS AND METHODS: Column experiments were used to test the possibility of using biostimulation via the addition of ethanol as a carbon source to improve nitrate reduction in the presence of elevated aqueous nickel. We subsequently analyzed the composition of the microbial communities that became established and their potential for U(VI) reduction and its in situ immobilization. RESULTS: Phylogenetic analysis revealed that the microbial population changed from heavy metal sensitive members of the actinobacteria, alpha- and gamma-proteobacteria to a community dominated by heavy metal resistant (nickel, cadmium, zinc, and cobalt resistant), nitrate reducing beta- and gamma-proteobacteria, and sulfate reducing Clostridiaceae. Coincidentally, synchrotron X-ray absorption spectroscopy analyses indicated that the resulting redox conditions favored U(VI) reduction transformation to insoluble U(IV) species associated with soil minerals and biomass. DISCUSSION: This study shows that the necessary genetic information to adapt to the implemented nickel stress resides in the endogenous microbial population present at the Oak Ridge FRC site, which changed from a community generally found under oligotrophic conditions to a community able to withstand the stress imposed by heavy metals, while efficiently reducing nitrate as electron donor. Once nitrate was reduced efficient reduction and in situ immobilization of uranium was observed. CONCLUSIONS: This study provides evidence that stimulating the metabolism of the endogenous bacterial population at the Oak Ridge FRC site by adding ethanol, a suitable carbon source, results in efficient nitrate reduction under conditions of elevated nickel, and a decrease of the redox potential such that sulfate and iron reducing bacteria are able to thrive and create conditions favorable for the reduction and in situ immobilization of uranium. Since we have found that the remediation potential resides within the endogenous microbial community, we believe it will be feasible to conduct field tests. RECOMMENDATIONS AND PERSPECTIVES: Biostimulation of endogenous bacteria provides an efficient tool for the successful in situ remediation of mixed-waste sites, particularly those co-contaminated with heavy metals, nitrate and radionuclides, as found in the United States and other countries as environmental legacies of the nuclear age.  相似文献   
99.
硝酸银沉淀-颗粒物返还法去除COD样品中的氯化物   总被引:1,自引:0,他引:1  
将样品中的颗粒物分离出来后,向样品中加入适量硝酸银,除去生成的氯化银沉淀,再将预先分离的颗粒物合并到水样中,混匀后测定。经过这样处理,既去除了水样中的Cl-,又保留了水样中原来的组份,保证了COD测定结果的准确性。  相似文献   
100.
The effects of nitrate additions on the physics, chemistry and biology of lake water were studied in 5 × 10 m polyethylene enclosures installed in Lake Kastoria, a shallow eutrophic lake in Northern Greece. The water physics, chemistry, chlorophyll a and nitrogenase activity were monitored from July 10 till October 17 1985 at 2 week intervals. The experiment included a control enclosure.

Water confinement in the control enclosure resulted in ammonia accumulation, a slight decrease in chlorophyll a, a significant reduction of nitrogenase activity and an increase in phosphorus release from the sediments at the end of the experimental period.

The addition of KNO3 resulted in higher than the control accumulation of NH3, chlorophyll reduction, increase in water transparency and reduction of nitrogenase activity. Large losses of nitrogen added were measured which were attributed to denitrification, organic matter sedimentation and ammonia volatilization. Anaerobic but not aerobic phosphorus release from sediments was inhibited at the end of the period. The reduction of nitrogenase activity and of chlorophyll a concentration are attributed to changes in phytoplankton composition from blue-greens to small-sized species grazed by zooplankters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号