首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   6篇
  国内免费   91篇
安全科学   22篇
废物处理   7篇
环保管理   20篇
综合类   130篇
基础理论   38篇
污染及防治   97篇
评价与监测   6篇
社会与环境   5篇
灾害及防治   1篇
  2023年   6篇
  2022年   3篇
  2021年   12篇
  2020年   10篇
  2019年   8篇
  2018年   9篇
  2017年   4篇
  2016年   8篇
  2015年   16篇
  2014年   11篇
  2013年   27篇
  2012年   23篇
  2011年   21篇
  2010年   15篇
  2009年   15篇
  2008年   22篇
  2007年   22篇
  2006年   20篇
  2005年   16篇
  2004年   17篇
  2003年   11篇
  2002年   6篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有326条查询结果,搜索用时 140 毫秒
321.
A computational model to predict acute aquatic toxicity to the ciliate Tetrahymena pyriformis has been developed. A general prediction of toxicity can be based on three consecutive steps: 1. Identification of a potential reactive mechanism via structural alerts; 2. Confirmation and quantification of (bio)chemical reactivity; 3. Establishing a relationship between calculated reactivity and toxicity. The method described herein uses a combination of a reactive toxicity (RT) model, including computed kinetic rate constants for adduct formation (log k) via a Michael acceptor mechanism of action, and baseline toxicity (BT), modelled by hydrophobicity (octanol-water partition coefficient). The maximum of the RT and BT values defines acute toxicity for a particular compound. The reactive toxicity model is based on site-specific steric and quantum chemical ground state electronic properties. The performance of the model was examined in terms of predicting the toxicity of 106 potential Michael acceptor compounds covering several classes of compounds (aldehydes, ketones, esters, heterocycles). The advantages of the computational method are described. The method allows for a closer and more transparent mechanistic insight into the molecular initiating events of toxicological endpoints.  相似文献   
322.
Production and use of engineered nanoparticles, such as titanium dioxide nanoparticles (nTiO2), is increasing worldwide, enhancing their probability to enter aquatic environments. However, direct effects of nTiO2 as well as ecotoxicological consequences due to the interactions of nTiO2 with environmental factors like ultraviolet (UV) irradiation on representatives of detrital food webs have not been assessed so far. Hence, the present study displayed for the first time adverse sublethal effects of nTiO2 at concentrations as low as 0.2 mg L−1 on the leaf shredding amphipod Gammarus fossarum both in presence and absence of ambient UV-irradiation following a 7-d exposure. In absence of UV-irradiation, however, the effects seemed to be driven by accumulation of nTiO2 at the bottom of the test vessels to which the gammarids were potentially exposed. The adverse sublethal and lethal effects on gammarids caused by the combined application of nTiO2 and ambient UV-irradiation are suggested to be driven by the formation of reactive oxygen species. In conclusion, both the accumulation of nTiO2 at the bottom of the test vessel and the UV induced formation of reactive oxygen species clearly affected its ecotoxicity, which is recommended for consideration in the environmental risk assessment of nanoparticles.  相似文献   
323.
Atmospheric elemental, reactive and particulate mercury (Hg) concentrations were measured north of downtown Reno, Nevada, USA from November 2004 to November 2007. Three-year mean and median concentrations for gaseous elemental Hg (Hg0) were 1.6 and 1.5 ng m−3 (respectively), similar to global mean Hg0 concentrations. The three-year mean reactive gaseous Hg (RGM) concentration (26 pg m−3) was higher than values reported for rural sites across the western United States. Well defined seasonal and daily patterns in Hg0 and RGM concentrations were observed, with the highest Hg0 concentrations measured in winter and early morning, and RGM concentrations being greatest in the summer and mid-afternoon. Elevated Hg0 concentrations in winter were associated with periods of cold, stagnant air; while a regularly observed early morning increase in concentration was due to local source and surface emissions. The observed afternoon increase and high summer values of RGM can be explained by in situ oxidation of gaseous Hg0 or mixing of RGM derived from the free troposphere to the surface. Because both of these processes are correlated with the same environmental conditions it is difficult to assess their overall contribution to the observed trends.  相似文献   
324.
This study analyses the relation of forest cover and stream flow on the 266 km2 Koga watershed in a headwater of Blue Nile Basin using both observed hydrological data and community perception. The watershed declined from 16% forest cover in 1957 to 1% by 1986. The hydrological record did not reveal changes in the flow regime between 1960 and 2002 despite the reduction in forest area. This agrees with the perception of the downstream community living near the gauging station. The upstream community, however, reported both decreases in low flows and increases in high flows shortly after the forest cover was reduced. The upstream deforestation effect appeared to have been buffered by a wetland lower in the watershed. This study concludes that community perception can be a complement to observational data for better understanding how forest cover influences the flow regime.  相似文献   
325.
The objective of the research is to quantify the relative contributions of physical and chemical mass transfer to the movement of Co(II/III)EDTA (chelates of Cobalt and Ethylene Diamine Tetraacetic Acid or EDTA) through a limestone-shale saprolite soil. Saprolite is a collective term referring to partially-weathered bedrock. It exists extensively in the subsurface. Because the parent bedding structures are maintained during the weathering process, saprolite soils are characterized by intensive fractures and secondary deposits of minerals such as Al-, Fe- and Mn-oxides on the fracture surfaces. Movement of reactive species through the soils may be influenced by diffusion into the rock matrix, a physical mass transfer (PMT) process, and interfacial chemical reactions, a chemical mass transfer (CMT) process. The PMT and CMT processes are phenomenologically similar but mechanistically different. In this research, previous laboratory observations from a Br and Co(II)EDTA tracer injection into an undisturbed saprolite soil column were used. Mechanistic reactive transport models were formulated to quantify the PMT and CMT processes. The PMT process was independently characterized by using the non-reactive tracer Br. Model parameters thus obtained were subsequently used as constraints to quantify the CMT processes involving Co(II)EDTA and its oxidation product Co(III)EDTA. Our calculations indicated that the PMT rates of the less reactive Co(III)EDTA were comparable with their theoretical CMT rates. In contrast, for the more reactive species Co(II)EDTA, CMT rates are higher than PMT rates. Evaluations of alternative CMT process models further confirmed one of our hypotheses on the basis of previous experimental understandings. The hypothesis suggested that competition from Fe-oxide for Co(II)EDTA may account for the majority of the decrease of Co(III)EDTA effluent concentrations that resulted in the separation of total Co and Co(III)EDTA breakthrough curves. Because Co(III)EDTA is more mobile than Co(II)EDTA in the subsurface, the results of this research suggest independent quantifications of CoEDTA PMT and CMT processes if laboratory results are to be interpreted correctly and scaled up for field and predictive uses.  相似文献   
326.
Lee ES  Liu G  Schwartz FW  Kim Y  Ibaraki M 《Chemosphere》2008,72(2):165-173
Controlled-release, semi-passive reactive barrier systems have been recently developed as a long-term treatment option for controlling the spread of contaminant plumes in groundwater. This paper describes a new computer code, and applies it to study coupled processes of solute release, reaction, and mass transport in an in situ remediation scheme using the controlled release of potassium permanganate. Confidence with the modeling approach was developed by model verifications and simulating results of a pilot-scale test-cell experiment. Sensitivity analyses indicated the possibilities of treatment inefficiencies due to inability of transverse dispersion to mix the permanganate (MnO(4)(-)) within the zone of reaction, fluctuations in source strength due to variations in flow velocity, and the small length of treatment zone due to strong soil utilization of MnO(4)(-). Although problems associated with the fluctuating source strength and strong soil utilization can be addressed by optimizing the release rate, the inefficiency of transverse dispersion to create mixing could pose a serious limitation. Through a series of model simulations, a system of injection/withdrawal wells in a doublet arrangement was developed to facilitate lateral spreading and mixing of MnO(4)(-). A well-mixed, stable MnO(4)(-) zone with predetermined size (DxL=8m x 2m) and concentration ranges (1.5-20 mg l(-1)) was created by four 1-day injection/withdrawal pumping periods over 24 d. This type of mixing zone may persist for many years with periodic well mixing and replacements of exhausted controlled-release forms. Coupled use of the generalized code with field hydrologic data will help to optimize the design and operation of controlled-release systems in practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号