首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   760篇
  免费   66篇
  国内免费   242篇
安全科学   52篇
废物处理   78篇
环保管理   71篇
综合类   427篇
基础理论   151篇
污染及防治   220篇
评价与监测   54篇
社会与环境   10篇
灾害及防治   5篇
  2024年   3篇
  2023年   8篇
  2022年   22篇
  2021年   23篇
  2020年   23篇
  2019年   26篇
  2018年   22篇
  2017年   31篇
  2016年   34篇
  2015年   34篇
  2014年   43篇
  2013年   157篇
  2012年   53篇
  2011年   58篇
  2010年   32篇
  2009年   39篇
  2008年   44篇
  2007年   58篇
  2006年   41篇
  2005年   44篇
  2004年   33篇
  2003年   41篇
  2002年   39篇
  2001年   29篇
  2000年   24篇
  1999年   15篇
  1998年   25篇
  1997年   18篇
  1996年   7篇
  1995年   8篇
  1994年   12篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1983年   1篇
  1975年   1篇
排序方式: 共有1068条查询结果,搜索用时 15 毫秒
941.
The biodegradation of nonextractable residues (NER) of pesticides in soil is still poorly understood. The aim of this study was to evaluate the influence of NER ageing and fresh soil addition on the microbial communities responsible for their mineralisation. Soil containing either 15 or 90-day-old NER of 13C-2,4-D (NER15 and NER90, respectively) was incubated for 90 days with or without fresh soil. The addition of fresh soil had no effect on the mineralisation of NER90 or of SOM, but increased the extent and rate of NER15 mineralisation. The analyses of 13C-enriched FAME (fatty acids methyl esters) profiles showed that the fresh soil amendment only influenced the amount and structure of microbial populations responsible for the biodegradation of NER15. By coupling biological and chemical analyses, we gained some insight into the nature and the biodegradability of pesticide NER.  相似文献   
942.
复合酸化剂对电镀污泥中铬、铜的去除效果   总被引:1,自引:1,他引:0  
陈曦  王玉军 《环境工程学报》2012,6(10):3735-3739
以电镀加工厂产生的污水污泥作为主要研究对象,研究了柠檬酸、硝酸、过氧化氢为复合酸化剂,Fe3+为增效剂对电镀污泥中铬和铜的去除效果,考察了酸化剂的浓度、反应时间、摇床转速、污泥pH、Fe3+浓度等因素对污泥中重金属去除效率的影响。结果表明:在室温下,含0.15 mol/L柠檬酸、1.5%过氧化氢、0.25 mol/L硝酸的复合酸化剂与增效剂2.0g/L Fe3+溶液共同处理污泥,固液比为1∶10,以150 r/min的转速振荡4 h,对污泥中Cr的去除效率达到80.02%,Cu的去除效率可达到92.89%,使污泥中残留Cr、Cu含量均符合国家污泥农用标准。  相似文献   
943.
An updated ecological risk assessment was conducted to re-evaluate and review the overall risk of pesticide residues to certain aquatic life. The focus was the impact on offsite non-target, freshwater organisms of pesticide operational sprays in British Columbia from 1973 until 2012. The values of risk quotients for pesticides of selected indicator organisms were determined to measure the effect. When compared with organophosphorus, carbamate, and other miscellaneous pesticides, this risk assessment analysis suggests that the historical use of persistent and highly toxic organochlorine pesticides posed, and continue to pose, a deleterious ecological risk. The risk is both short-term acute and long-term sub-acute, chronic toxicity to offsite, non-target aquatic invertebrates and juvenile salmonid fish. Data indicated that these organisms were, and remain, subjected to harmful effects of pesticide residues to varying degrees. Most vulnerable were, and also are, benthic organisms inhabiting bottom sediments. This substrate is the natural sink for persistent pesticide residues, predominantly organochlorine pesticides from historical use, as well as dioxins, furans, and polycyclic aromatic hydrocarbons from wood preservatives, and other sources. Environment Canada's main aquatic protection strategy was a 10 metre no-treatment buffer zone, augmented with an additional appropriate setback along shorelines of fishery and wildlife resource-sensitive water bodies. This study discusses why this guideline was necessary, useful and effective, but was only partially successful. The physical-chemical properties of pesticide residues, from either an individual compound or different compounds in combination, also influence the nature of biological impacts on non-target, aquatic organisms. Few studies have been conducted in British Columbia aquatic environments to investigate the significance of this aspect.  相似文献   
944.
ABSTRACT: Four 10-ha plots in dense watermilfoil beds of Lake Seminole, Georgia, were each treated with either 2,4-D DMA or 2,4-D BEE at rates of 22.5 and 45 kg a.e./ha. Both formulations were shown to be rapidly converted to the 2,4-D acid form, with no detection of 2,4-D DMA or 2,4-D BEE in the water within less than 24 hours after treatment. The maximum detected 2,4-D concentrations in the high rate 2,4-D DMA and 2,4-D BEE plots were 3.6 and 0.68 mg/, respectively. However, all but seven samples at a 2,4-D BEE plot showed nondetectable herbicide levels by day 7, with all water samples showing nondetectable levels by day 13. Dimethylnitrosamine and 2,4-dichlorophenol, potentially toxic transformation products of the herbicide formulations, were at nondetectable levels in all water samples. Sediment samples showed no significant net accumulation of 2,4-D, 2,4-D BEE, or 2,4-dichlorophenol during the summer monitoring; dimethylnitrosamine remained at nondetectable levels. There was no accumulation of 2,4-D in fish collected from the two plots treated with 2,4-D DMA. Four of 24 game fish from the 2,4-D BEE treatment plots contained low levels of 2,4-D in muscle tissue, with a maximum value of 0.29 μg/g. In contrast, 18 of 20 gizzard shad collected from these plots through day 13 contained detectable 2,4-D in the muscle, with a maximum concentration of 6.9 μg/g. All fish collected after day 13 contained nondetectable levels of 2,4-D. Small decreases in dissolved oxygen and pH, associated with the complete watermilfoil control in all plots, had returned to normal summer values by day 28.  相似文献   
945.
本文首先运用现代产权经济理论对我国农村现行土地制度进行了分析,进而提出我国农村土地宜实行复合所有制,并从土地特征、我国现实情况、土地印度的历史变迁,农地制度改革的风险和成本、各国土地制度变迁的趋势等方面进行了论证.  相似文献   
946.
This risk assessment on 1,1,2-trichloroethane (T112) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 22 studies for fish, 45 studies for invertebrates and 9 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 300 µg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.01 µg T112/l water and a worst case PEC of 5 µg T112/l water. The calculated PEC/PNEC ratios give a safety margin of 60 to 30,000 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
947.
This risk assessment on 1,2-dichloroethane (EDC) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 21 studies for fish, 17 studies for invertebrates and 7 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 1100 µg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.5 µg EDC/l and a worst case PEC of 6.4 µg EDC/l. The calculated PEC/PNEC ratios give a safety margin of 170 to 2200 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
948.
This risk assessment on chloroform was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 23 studies for fish, 17 studies for invertebrates and 10 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a typical PNEC value of 72 µg/l. Due to limitations of the studies evaluated, a worst PNEC of 1 µg/l could also be used. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.2 µg chloroform per litre of water and a worst case PEC of 5 to 11.5 µg chloroform per litre of water. The calculated PEC/PNEC ratios give a safety margin of 6 to 360 between the predicted no effect concentration and the exposure concentrations. A worst case ratio, however, points to a potential risk for sensitive species. Refinement of the assessment is necessary by looking for more data. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
949.
This risk assessment on tetrachloroethylene (PER) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 18 studies for fish, 13 studies for invertebrates and 8 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 51 µg/l. Most of the available monitoring data apply to rivers and estuary waters and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.2 µg PER/l water and a worst case PEC of 2.5 µg PER/l water. The calculated PEC/PNEC ratios give a safety margin of 20 to 250 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
950.
The residues of 31 chlorinated hydrocarbons (CHCs), 25 chlorophenols (CPs), 30 organophosphorus (OP) and pyrethroid (PRT) in two arable soils from the semi-arid and subtropical regions of China were assessed. Data obtained indicate that the main compounds of CHC pesticide residues in the semi-arid soil were 4,4′-DDE (25.3 ng/g) and β-HCH (14.1 ng/g), which totally accounted to about 90% of total CHC residues detected. The total content of CHC residues detected in the subtropical soil was only 3.1 ng/g, of which approximately 50% was β-HCH. However, the total content of CP residues in both of the soils was about 11 ng/g. In the semi-arid soil, only parathion-methyl amongst the 30 compounds of OP and PRT residues was detected (32.5 ng/g), whilst malathion and parathion-methyl (8.7 and 17.7 ng/g, respectively) detected in the subtropical soil. Based on these results, it was suggested the environmental risk of pesticide residues ranked in an order as CHCs (mainly as 4,4′-DDE, β-HCH) > OP (parathion-methyl) > CPs for the semi-arid soil, and as OPs (parathion-methyl and malathion) > CPs > CHCs (β-HCH) for the subtropical soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号