首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   38篇
  国内免费   272篇
安全科学   20篇
废物处理   16篇
环保管理   23篇
综合类   415篇
基础理论   80篇
污染及防治   55篇
评价与监测   26篇
社会与环境   8篇
灾害及防治   2篇
  2024年   3篇
  2023年   8篇
  2022年   23篇
  2021年   29篇
  2020年   20篇
  2019年   29篇
  2018年   38篇
  2017年   28篇
  2016年   30篇
  2015年   42篇
  2014年   39篇
  2013年   33篇
  2012年   45篇
  2011年   29篇
  2010年   25篇
  2009年   27篇
  2008年   18篇
  2007年   40篇
  2006年   19篇
  2005年   17篇
  2004年   16篇
  2003年   12篇
  2002年   11篇
  2001年   12篇
  2000年   10篇
  1999年   5篇
  1998年   9篇
  1997年   8篇
  1996年   2篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有645条查询结果,搜索用时 781 毫秒
91.
于2012年5月11日至5月15日同时对成都中心城区及其大气环境监测对照点都江堰灵岩寺大气PM2.5进行采集,并分析其中的化学组分。研究结果表明:成都市中心城区PM2.5的总体质量浓度大于灵岩寺,且各化学组分的质量浓度也均大于灵岩寺。两站点PM2.5中OC/EC均大于2,有2次有机碳的存在;中心城区WSOC和TN日均浓度大于灵岩寺,同时发现中心城区TN日变化趋势与灵岩寺一致,WSOC变化不明显;水溶性二次离子(SO2-4、NO-3和NH+4)浓度相对较高,中心城区SO2-4/NO-3值比灵岩寺小,说明成都市机动车尾气是主要排放源。  相似文献   
92.
不同施肥措施对水稻土壤微生物镉抗性的影响   总被引:1,自引:0,他引:1  
镉(Cd)是最常见的土壤重金属污染物之一,对植物和人体具有毒害作用,研究不同施肥条件下的土壤微生物Cd抗性水平,可以为有机肥改良重金属污染提供一定的理论依据.为了探讨施无机肥和有机肥对于微生物Cd抗性水平的影响,在中国江苏常州、江西上高和福建福州水稻种植区采集了施有机肥(猪粪)和无机肥的土壤样品及猪粪样品,利用功能基因芯片(GeoChip 5.0)技术,研究了土壤微生物Cd抗性功能基因的响应及影响Cd抗性功能微生物群落互作的因素.结果表明,施有机肥土壤中有效态Cd含量[(1.08±0.70)mg·kg-1]显著低于施无机肥土壤[(3.75±1.22)mg·kg-1](P<0.05).土壤及猪粪样品中共检测到639个Cd抗性功能基因,施有机肥土壤中微生物Cd抗性基因丰度高于施无机肥土壤;有效态Cd含量、含水率、pH和铵态氮含量是影响Cd抗性微生物分布的重要环境因素.对Cd抗性微生物分子生态网络分析表明,施无机肥条件下,pH、含水率和有效态Cd含量是影响功能微生物潜在互作关系的主要因素;施有机肥条件下,主要影响因素是全钾和含水率.相比较无机肥,施用有机肥提高了土壤中微生物的Cd抗性水平及耐Cd微生物分子生态网络中的正相互作用.  相似文献   
93.
矿化和硝化过程是森林生态系统氮素循环的重要组成部分,对生态系统功能的维持与土壤环境质量有着重要影响.净矿化和净硝化速率是评价土壤氮素供应能力和氮损失风险的常用指标.为探究青藏高原林地土壤氮转化特征及其影响因素,以气候差异较大的祁连山和藏东南地区作为研究对象,采集了327个林地土壤样本,通过样本处理及室内培养试验,分析了土壤中无机氮含量、净矿化速率、净硝化速率及其与环境因子之间的相关关系.结果表明,藏东南地区林地土壤的无机氮含量、净矿化速率和净硝化速率[109.70 mg·kg-1、3.08 mg·(kg·d)-1和2.19 mg·(kg·d)-1]均显著高于祁连山地区[49.47 mg·kg-1、0.70 mg·(kg·d)-1和0.69 mg·(kg·d)-1];土壤的净矿化速率与年平均温度、年平均降水量、湿润指数及土壤有机质含量之间具有极显著的正相关关系(P<0.001).净硝化速率与年平均温度、年平均降水量之间无显著正相关关系,但与土壤净矿化速率呈极显著的正相关关系(P<0.001).这表明藏东南地区林地土壤具有比祁连山林地土壤更高的氮素供应水平,而水热条件可能是造成两地土壤净矿化速率差异的主要原因,净矿化速率是净硝化速率的限制因子,对青藏高原林地土壤的氮素损失有着重要影响.这些结果强调了水热条件等气候环境因子对青藏高原林地土壤净矿化和净硝化速率的重要影响,进一步加深了人们对青藏高原林地土壤氮素转化规律的认识.  相似文献   
94.
华南地区大气气溶胶中EC和水溶性离子粒径分布特征   总被引:1,自引:0,他引:1  
利用1988~2010年在华南地区广州、深圳、海口等多地采得的126组样品,初步分析了华南地区不同时段不同地区和水溶性离子成分的浓度变化及其粒径分布特征.结果表明:各站的AEC(等效元素碳)浓度和水溶性无机离子浓度差异较大,Na+和Cl-基本表现为海岛站点>海岸站点>乡村站点>城市站点,其余主要离子成分和AEC则表现为城市站点>乡村站点>海岸站点>海岛.城市站点、乡村站点、海岸站点和海岛站点AEC质量浓度在不同年段随粒径分布的变化趋势比较一致的,基本呈双峰结构,主峰主要位于0.43~0.65mm,次峰主要位于4.7~5.8mm.根据各离子的粒径分布的相似性可以将各种离子的垂直分布形态分为3类:二次离子(SO42-、NO3-和NH4+)呈现明显的三峰分布形态;F-、Ca2+、Mg2+、Na+和Cl-呈双峰分布形态;K+和AEC呈单峰分布形态,主峰位于细粒子模态.各成分浓度随高度的变化则呈现不同的变化规律.降水对气溶胶粒子的清除作用是显著的,尤其是粒径大于1μm的颗粒,而1.1~2.1μm的粒子段是降水清除的关键区.局地污染中,AEC质量浓度随粒径的分布呈现出了很明显的“单峰”结构,且主要集中在次微米段粒径范围内.  相似文献   
95.
农业活动干扰下地下水无机碳循环过程研究   总被引:2,自引:0,他引:2  
为准确识别浅层地下水污染来源及污染过程,选择我国北方某集约化蔬菜种植基地浅层地下水作为研究对象,借助水化学组成、氢氧同位素以及溶解性无机碳(DIC)碳同位素组成,探讨浅层地下水来源以及DIC来源和迁移转化特征.结果表明:浅层地下水阳离子以Ca2+和Mg2+为主,阴离子以HCO3-和SO42-为主,沿地下水流向,水化学类型由HCO3?-Ca2+-Mg2+型转变为HCO3--SO42--Mg2+-Ca2+型;浅层地下水δD组成范围为-69.6‰~-52.7‰,均值为-63.5‰,δ18O组成范围为-9.29‰~-6.80‰,均值为-8.45‰.大气降水是浅层地下水重要补给来源,靠近河水的浅层地下水还接受地表水的补给;浅层地下水δ13CDIC组成范围为-11.76‰~-5.85‰,均值为-10.43‰.浅层地下水DIC来源包括土壤CO2、碳酸盐矿物以及有机质分解.河水DIC侧渗对局部浅层地下水DIC碳同位素造成影响,化学肥料引起的酸性物质参与碳酸盐矿物风化作用以及浅层地下水CO2去气作用对地下水δ13CDIC组成产生影响,在利用DIC碳同位素识别地下水污染来源时需要引起重视.  相似文献   
96.
香河夏季PM2.5水溶性无机离子组分特征   总被引:4,自引:0,他引:4  
2013年6月在中科院香河观测站对大气气溶胶化学组分特征进行研究.对PM2.5和PM10质量浓度进行在线监测,结果表明,观测期间PM2.5和PM10质量浓度均值与方差分别为(151.78±82.48)μg/m3和(250.47±106.99)μg/m3;SNA(SO42-、NO3-、NH4+)占PM2.5质量浓度的44.8%,且大多富集在粒径0.5~2.5μm的细颗粒物中.硫氧化率(SOR)、氮氧化率(NOR)平均值分别为0.35、0.31,SO2主要通过非均相的氧化反应转化为SO42-,NOx主要通过白天光化学反应转化为NO3-;灰霾和轻雾天较高的SOR和NOR表明,灰霾和轻雾天相比于清洁天有较多的SO2、NOx转化为SO42-、NO3-.气流后向轨迹分析表明灰霾和轻雾天空气质量受经过河北、山东及江苏北部气流影响.  相似文献   
97.
采用连续分级提取法研究了蠡湖表层沉积物中有机磷和无机磷的形态及其赋存特征,同时结合间隙水体中DTP(溶解性总磷)的空间分布特征,讨论了各形态磷的生物有效性及其释放风险. 结果表明,蠡湖沉积物中的磷以IP(无机磷)为主,w(IP)占w(TP)的58.09%. IP中以生物可利用性差的Ca-Pi(Ca结合态无机磷)占优势,w(Ca-Pi)为(207.75±48.56)mg/kg,占w(IP)的48.97%;沉积物OP(有机磷)中以活性最差的NA-Po(非活性有机磷)占绝对优势,w(NA-Po)为(195.33±50.73)mg/kg,占w(OP)的67.09%. 间隙水中的磷以DIP(溶解性无机磷)为主,ρ(DIP)占ρ(DTP)的11.86%~86.13%,平均值为59.65%. WA-Pi(弱吸附态无机磷)、PA-Pi(潜在活性无机磷)、Fe/Al-Pi(Fe/Al结合态无机磷)、WA-Po(弱吸附态有机磷)、PA-Po(潜在活性有机磷)的质量分数均与间隙水中ρ(DTP)呈极显著正相关(P<0.01),w(Ca-Pi)与间隙水中ρ(DTP)呈正相关(P<0.05),w(NA-Po)与间隙水中ρ(DTP)无显著的相关性. 因此,即使在外源磷得到有效控制的情况下,沉积物中的IP及高活性有机磷的释放仍有可能导致湖泊富营养化状态维持不变.   相似文献   
98.
为研究雾霾天气下SO42-、NO3-和NH4+的形成机制,2013年4月18~23日,使用6级Anderson大流量采样器采集了不同粒径段的气溶胶样品,并利用离子色谱对其中的水溶性无机离子进行了分析.结果表明,广州雾霾期间PM3和PM10中总水溶性无机离子平均浓度分别为(32.7±13.3)μg/m3和(39.4±15.7)μg/m3.SO42-、NO3-和NH4+是最主要的水溶性离子,它们在PM3和PM10中占总离子质量分数分别为76%和71%.3种离子主要集中在0.49~1.5μm的液滴模态,该模态中NH4+主要以(NH4)2SO4和NH4NO3的形式存在,而凝聚模态的NH4+则主要以(NH4)2SO4和NH4HSO4的形式存在.液滴模态的SO42-主要来自雾内或颗粒表面的液相氧化反应,NO3-主要来自夜间N2O5在颗粒表面的水解反应,NH4+主要来自NH3在颗粒上进行的非均相中和反应,而这3种离子在该模态的日变化特征则很好的反映了以上的形成机制.受太阳辐射的影响,3种离子的浓度在凝聚模态均表现为白天高于夜晚.  相似文献   
99.
天津近岸海域大气颗粒物无机组分季节变化及源析   总被引:4,自引:1,他引:3       下载免费PDF全文
2006~2007年在天津近岸海域分4个季节走航采集了不同粒径大气颗粒物样品,分析了其质量浓度以及元素、离子和碳等化学组成,并应用富集因子以及特征化合物比值对其来源进行了探讨.结果表明,天津近岸海域TSP,PM10和PM2.5的质量浓度分别为(294.98±3.95),(279.87±17.53),(205.50±38.13)μg/m3,且呈现出明显的季节变化,秋季颗粒物浓度最高,冬季次之,夏季最低. TSP、PM10和PM2.5中总元素浓度分别为48.76, 47.94,32.08 μg/m3. TSP中含量最高的离子是Na+, PM10和PM2.5中含量最高的离子是Cl-. 3种不同粒径中OC浓度秋、冬两季均明显高于春夏两季. Al/Fe的比值分析结果表明,春季TSP的主要来源为土壤尘,秋、冬季PM10和PM2.5主要受燃煤的影响. Cu、Zn和Pb的富集系数较高,其中Pb在冬季PM10中富集达到最高为741.3. NO3-/SO42-的变化范围为0.28~0.85,春夏季该比值较高于秋冬季,反映了该海域同时受燃煤与机动车污染的影响.OC/EC变化范围为2.13~5.58,表明该海域气溶胶中存在着大量二次有机碳.  相似文献   
100.
青岛大气气溶胶水溶性无机离子的粒径分布特征   总被引:7,自引:0,他引:7       下载免费PDF全文
为了解大气颗粒物中水溶性离子的来源及环境效应,利用安德森采样器连续采集青岛近海2008年1~12月大气颗粒物分级样品,用离子色谱法分析其中主要的水溶性离子,并讨论其粒径分布特征.结果表明, NH4+、K+、Cl-、NO3-、PO43-、SO42-主要存在于粒径小于2.1μm的细粒子中,Na+、Mg2+、Ca2+、F-则主要存在于粒径大于2.1μm的粗粒子中.各离子的粒径分布存在明显的季节变化.NH4+、K+和SO42-四季均主要分布于细粒子中,而Mg2+和Ca2+则主要分布在粗粒子中,两者均在3.3~4.7μm出现峰值;Na+在春、夏、秋3个季节主要存在于粗粒子中,集中分布在3.3~7.0μm粒径范围内,而在冬季则集中分布于0.43~1.1μm且细粒子含量高于粗粒子;春季Cl-在粗粒子中分布较多,尤以2.1~3.3μm范围内的最为突出,而其他3个季节均是细粒子比例明显偏高;NO3-春、夏两季在粗、细粒子中的含量各占50%,秋、冬季节均为细粒子占多数;PO43-夏季只出现在0.65~1.1μm以及>11μm的粒径范围内,粗粒子占95%,其他3个季节则是细粒子含量较高;春季F-在3.3~4.7μm出现峰值,夏季各粒径均未检出,而秋、冬两季粗、细粒子各占50%.K+、NH4+、F-、Cl-、NO3-、SO42-和PO43-受供暖期燃煤取暖的影响较大.K+和NH4+在供暖期和非供暖期峰值均出现在0.43~0.65μm粒径范围;F-供暖期在0.43~0.65μm和3.3~4.7μm粒径段出现峰值;供暖期Cl-的峰值出现在0.43~0.65μm粒径段,而在非供暖期,则出现在2.1~3.3μm的粗粒径段;SO42-和NO3-在供暖期和非供暖期的峰值均出现在0.43~0.65μm和3.3~4.7μm粒径段;供暖期PO43-的最大峰值出现在0.43~0.65μm粒径段,而在非供暖期其最大峰值出现在3.3~4.7μm粒径段.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号