首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   615篇
  免费   50篇
  国内免费   100篇
安全科学   17篇
废物处理   9篇
环保管理   211篇
综合类   272篇
基础理论   136篇
污染及防治   20篇
评价与监测   41篇
社会与环境   31篇
灾害及防治   28篇
  2024年   4篇
  2023年   11篇
  2022年   26篇
  2021年   19篇
  2020年   23篇
  2019年   18篇
  2018年   23篇
  2017年   23篇
  2016年   37篇
  2015年   21篇
  2014年   31篇
  2013年   52篇
  2012年   45篇
  2011年   49篇
  2010年   34篇
  2009年   22篇
  2008年   28篇
  2007年   31篇
  2006年   33篇
  2005年   19篇
  2004年   16篇
  2003年   22篇
  2002年   23篇
  2001年   12篇
  2000年   14篇
  1999年   11篇
  1998年   18篇
  1997年   12篇
  1996年   12篇
  1995年   10篇
  1994年   7篇
  1993年   3篇
  1992年   7篇
  1991年   9篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1983年   4篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   1篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有765条查询结果,搜索用时 312 毫秒
31.
Speiran, Gary K., 2010. Effects of Groundwater-Flow Paths on Nitrate Concentrations Across Two Riparian Forest Corridors. Journal of the American Water Resources Association (JAWRA) 46(2):246-260. DOI: 10.1111/j.1752-1688.2010.00427.x Abstract: Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/l beneath fields to 2 mg/l beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/l to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations.  相似文献   
32.
Abstract: Urbanization represents a strong and increasingly more prevalent impact on stream quality worldwide. One of the characteristic effects of increased urbanization is a consistent decline in biological stream condition. The characterization of this biological degradation with increasing urbanization presents a number of advantages for the study and management of urban streams and catchments. In this paper, the limitation of biological condition with urbanization, called observed biological potential, is characterized. Using an urban intensity index and a biological index developed specifically for urban systems in the Baltimore, Maryland; Cleveland, Ohio; and San Jose, California regions, two principal techniques were compared (quantile regression and bin regression) to define observed biological potential along urban gradients. Quantile regression was selected as the preferable tool for describing observed biological potential given the consistency with which it can be applied and its statistical efficiency, however, bin quantile regression performed similarly. Having identified a numeric approximation of observed biological potential, two methods for identifying factors related to distance from potential as a way of identifying critical environmental factors affecting biological condition in urban areas were explored. The results of this work can be used for identifying benchmarks for urban stream biological condition, identifying limiting catchment characteristics, and prioritizing urban stream management efforts.  相似文献   
33.
Biodiversity data are in increasing demand to inform policy and management. A substantial portion of these data is generated in citizen science networks. To ensure the quality of biodiversity data, standards and criteria for validation have been put in place. We used interviews and document analysis from the United Kingdom and The Netherlands to examine how data validation serves as a point of connection between the diverse people and practices in natural history citizen science networks. We found that rather than a unidirectional imposition of standards, validation was performed collectively. Specifically, it was enacted in ongoing circulations of biodiversity records between recorders and validators as they jointly negotiated the biodiversity that was observed and the validity of the records. These collective validation practices contributed to the citizen science character or natural history networks and tied these networks together. However, when biodiversity records were included in biodiversity‐information initiatives on different policy levels and scales, the circulation of records diminished. These initiatives took on a more extractive mode of data use. Validation ceased to be collective with important consequences for the natural history networks involved and citizen science more generally.  相似文献   
34.
ABSTRACT: Peachtree Creek is a gaged watershed that has experienced a substantial increase in urbanization. The relationships of runoff to rainfall were studied for total annual flows, low flows, and peak flows. For each type of flow the relationship in the later, more urbanized period was compared to that in the earlier, less urbanized period. An increase in total runoff in wet years was observed as urbanization increased, but a decrease occurred during dry years. For low flows a similar decrease of runoff in dry years was found. An increase in peak runoff was observed over most of the range of precipitation. Increasing peak flows and declining low flows can be adequately explained by urban hydrologic theoryshed. which focuses on the effects of urban impervious surfaces upon direct runoff and infiltration. However, a decline of total runoff in dry years can be explained only by taking into account evapotranspiration as well. The concept of advectively assisted urban evapotranspiration, previously discovered by climatologists, is needed to explain such a loss of total runoff. Urban hydrologic theory must take into account vegetation and evapotranspiration, as well as impervious surfaces and their direct runoff, to explain the magnitude of total annual flows and low flows. Urban stormwater management should address the restoration of low flows, as well as the control of floods.  相似文献   
35.
ABSTRACT: The Thornthwaite moisture index is a useful indicator of the supply of water (precipitation) in an area relative to the demand for water under prevailing climatic conditions (potential evapotranspiration). This study examines the effects of changes in climate (temperature and precipitation) on the Thornthwaite moisture index in the conterminous United States. Estimates of changes in mean annual temperature and precipitation for doubled-atmospheric CO2 conditions derived from three general circulation models (GCMs) are used to study the response of the moisture index under steady-state doubled-CO2 conditions. Results indicate that temperature and precipitation changes under doubled-CO2 conditions generally will cause the Thornthwaite moisture index to decrease, implying a drier climate for most of the United States. The pattern of expected decrease is consistent among the three GCMs, although the amount of decrease depends on which GCM climatic-change scenario is used. Results also suggest that changes in the moisture index are related mainly to changes in the mean annual potential evapotranspiration as a result of changes in the mean annual temperature, rather than to changes in the mean annual precipitation.  相似文献   
36.
ABSTRACT: An excellent hydrologic record on sagebrush range-land has been developed at the Reynolds Creek Experimental Watershed in southwestern Idaho. The objectives of this paper were two-fold: (1) to analyze and describe the hydrologic record (8–18 years) from four sagebrush watersheds (1–83 ha); and (2) to evaluate the hydrology component of SPUR, a comprehensive rangeland model. The watersheds represent a gradient in elevation (1180–1658 m) and precipitation (240–350 mm/yr). Runoff was a small fraction (> 2 percent) of the total water budget for all of the watersheds. It occurred very infrequently at the three lower elevation watersheds: Summit, Flats, and Nancy Gulch. At Lower Sheep, the highest elevation watershed, runoff occurred most years for a period of 1 to 17 weeks in the winter. Frozen soil combined with rainfall or snowmelt was associated with most of the runoff from Flats and Nancy Gulch. At Summit summertime thunderstorms produced all of the runoff. The average annual sediment yield from all of the watersheds was low (17–950 kg/ha). It was highest from Summit, which had well developed alluvial channels and very steep slopes. SPUR was able to simulate runoff with reasonable accuracy only at Summit, where frozen soils were not a factor. There was poor correlation between predicted and actual annual 8ediment loss. The model tended to overpredict evapotranspiration early in the growing season and underpredict it in the late summer.  相似文献   
37.
ABSTRACT: Urban wastewater can be a valuable source of water and plant nutrients for agricultural producers, particularly in arid regions. The scientific literature reveals cautious optimism concerning the biological, institutional, and economic viability of irrigating crops with secondary-treated effluent. A derived effluent demand function for agricultural producers near Tucson, Arizona, reveals a potential annual demand of 11,000 acre-feet under present price and proposed delivery system conditions. In this case, wastewater could be exchanged for ground water and both the urban and rural areas would gain.  相似文献   
38.
ABSTRACT: Evapotranspiration from vegetation is generally computed without consideration for early morning energy loss involved in drying wet leaf surfaces. In humid areas where dew formation is frequent, estimation of energy requirements for evaporating dew should be of interest. In this study, sensible heat flux (H) was computed from wind and temperature profile measurements over the study site. A leaf wetness sensor was used to measure the duration of evaporation from an exposed leaf surface, and net radiation was measured with a radiometer. The energy flux during the period of wet leaf surface evaporation was integrated over time. A cattail lysimeter situated at the site indicated the time when evapotranspiration started after wet leaves were dry. The energy requirements to dry an exposed wet leaf surface was estimated using energy balance methods. The mean value based on 44 days of observations from mid February to early May of 1993 indicates that the energy required to evaporate dew from openly exposed wet leaves was 5 percent of the total daily evapotranspiration of cattails with a coefficient of variation of 0.72. The mean time required to evaporate dew from exposed leaf surfaces from the onset of positive net radiation was 78 minutes. The mean dew evaporation in a morning from an exposed leaf surface was 0.16 mm with a maximum value of 0.41 mm. The energy required to dry wet leaves is a factor that should be considered when modeling evapotranspiration at hourly or shorter time intervals. Also, physical evapotranspiration models need to account for energy requirements for drying dew and rainfall wetted leaves.  相似文献   
39.
ABSTRACT: This paper reports an analysis of the water budgets of 10 small (5–6 ha) diked areas (cells) within the Delta Marsh in southcentral Manitoba, Canada. The important terms in the water budget equation in this study were precipitation (P), water pumped in (SWI), evapotranspiration (ET), seepage in (GWI) and out (GWO), and change in storage (ΔS). P, SWI, and S were measured directly, and the sum of ET and GWO determined by difference. Estimating ET as 0.7 pan evaporation gave a seepage loss of 2.9 mm/day from the most intensively studied cell. Other methods of estimating ET produced estimates of GWO ranging from 2.4 to 3.8 mm/day. Water budgets for less intensively studied cells indicated seepage loss increased as perimeter available for seepage increased, but not proportionately. Efforts to measure seepage directly or estimate it from measured hydraulic gradients and hydraulic conductivity produced estimates much lower than the estimates from the water budget equation. Hydraulic conductivities were very heterogeneous, reflecting the sorting of water deposited sediments. Comparison of the hydraulic conductivities with seepage estimates from the water budget strongly suggests water movement downward as well as laterally from these diked areas.  相似文献   
40.
Abstract: Diverse cropping systems can have significant impacts on nutrient losses through tile drain systems and to surface water bodies (rivers and streams). Increased transport of nitrogen to water bodies can reduce dissolved oxygen and enrich the supply of nutrients, resulting in hypoxic zones. With the objective of reducing the transport of nutrients from agricultural watersheds, long term studies (1990 to 1998) were conducted in Iowa to investigate the impact of tillage, crop rotation, and N-management practices on NO3-N leaching losses to tile drain water. Results of these studies indicated that continuous corn production systems required higher input of nitrogen fertilizers and resulted in significantly higher NO3-N leaching losses compared to rotated corn in plots either fertilized with manure or urea ammonium nitrate. Also, rotated corn gave higher corn yields, 8 megagrams per hectare (Mg/ha) versus 6 Mg/ha, than continuous corn. The higher N application rates resulted in increased NO3-N concentrations in tile water. A strip cropping system with alfalfa lowered NO3-N concentrations in tile water to less than 10 mg/l. These studies indicated that better land use practices can reduce NO3-N leaching losses to surface and ground water systems and will help in mitigating environmental concerns of the production agriculture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号