首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   24篇
  国内免费   76篇
安全科学   6篇
废物处理   2篇
环保管理   21篇
综合类   160篇
基础理论   47篇
污染及防治   26篇
评价与监测   8篇
社会与环境   8篇
灾害及防治   1篇
  2024年   2篇
  2022年   5篇
  2021年   9篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2017年   5篇
  2016年   10篇
  2015年   8篇
  2014年   17篇
  2013年   16篇
  2012年   25篇
  2011年   27篇
  2010年   14篇
  2009年   11篇
  2008年   15篇
  2007年   17篇
  2006年   23篇
  2005年   16篇
  2004年   8篇
  2003年   5篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
  1983年   1篇
  1972年   1篇
排序方式: 共有279条查询结果,搜索用时 15 毫秒
61.
以红薯浸泡液为碳源的生物反硝化   总被引:3,自引:1,他引:2  
梅翔  占晶  沙昊  谢玥  朱瑾 《环境工程学报》2010,4(5):1032-1036
为选择低碳氮比污水生物脱氮中合适的碳源,以搅拌罐浸泡淀粉类物质释放碳源,在确定利用红薯浸泡液为碳源后,以浸没式生物滤池为反应器进行生物反硝化实验。实验结果表明:20 g红薯置于2 L自来水中,采用250 r/m in的搅拌速度,搅拌频率为每搅拌3 h停1 h,2 d后得到的浸泡液COD浓度平均为5 921 mg/L,最高可超过7 000 mg/L;将此红薯浸泡液和污水以1∶50的流量比例,采用分别投加的方式进入反应器,污水中总氮、硝酸盐氮、亚硝酸盐氮及氨氮的平均去除率分别为88.6%、91.6%、88.2%和54.8%,出水COD平均在30 mg/L以下;在红薯浸泡液COD浓度为5 700 mg/L左右时,进水中亚硝酸盐氮浓度与硝酸盐氮浓度比为3∶2时总氮去除率为95.3%,当该比例为2∶3时总氮去除率为88.2%。研究表明,红薯浸泡液是一种经济合适的碳源,采用红薯浸泡液作为低碳氮比污水生物处理中反硝化的碳源是可行的。  相似文献   
62.
夏季富营养化滆湖中沉水植物群落重建及水质净化效果   总被引:1,自引:0,他引:1  
通过滆湖原位围隔试验分析了不同单种及混种沉水植物群落随环境变化的生长状况及对水质的净化效果.结果表明:(1)夏季,沉水植物生物量的平均值与透明度/水位存在显著线性相关性,进一步表明沉水植物的生长在很大程度上依赖于光强和水深.(2)各植物区(除马来眼子菜区外)的高锰酸盐指数、TN高于空白对照区.(3)对比空白对照区,苦草...  相似文献   
63.
选取金鱼藻(Ceratophyllum demersum)、轮叶黑藻(Hydrilla verticillata)、水盾草(Cabombacaroliniana)、苦草(Vallisneria gigantean)为试验材料,研究不同水层的光照强度对其存活率、株高、生物量等的影响,旨在找出这4种沉水植物在自然条件下的最...  相似文献   
64.
在以再生水为补水水源的圆明园玉玲珑水域进行沉水植物收割实验,自2011年4—12月间每隔半个月监测一次水质。结果表明,通过在生长期收割沉水植物,玉玲珑水体TP、SRP、TN、NH4+-N、NO3--N和COD的平均浓度可维持在0.1、0.04、0.86、0.1、0.32和18 mg/L左右,水质保持在Ⅲ类至Ⅳ类地表水之间;与之对照的不收割沉水植物的玉玲珑进水口水域,9月沉水植物开始死亡腐烂,TP、SRP、TN、NH4+-N最高分别可达0.5、0.1、2.4和0.60 mg/L;作为对照的另一以挺水植物为主的水域,水质普遍劣于有大量沉水植物生长的水域,TP、SRP、TN、NH4+-N最高分别可达1.2、0.60、6.1和0.61mg/L。圆明园的实地实验表明,沉水植物有很强的净化水质作用,通过生长期收割,能够进一步强化其水质净化作用,可以作为一项对富营养化水体进行生态管理的有效措施进行推广。  相似文献   
65.
水生植物修复氮、磷污染水体研究进展   总被引:5,自引:0,他引:5  
氮、磷是引起水体富营养化、导致水质恶化的重要因素,因此去除氮、磷一直是污水处理的重要任务.鉴于传统物理、化学方法存在的操作难、成本高、易产生二次污染等问题,人们越来越多地将目光转向利用水生植物去除氮、磷营养物质、净化水质上.介绍了近年来国内外应用水生植物修复氮、磷污染水体的方法、效果及其影响因素,探讨了水生植物净化污染水体的机制.针对目前研究中的不足,提出今后应在不同植物种类开发、植物组合优化以及植物的净化机制等方面加强研究.  相似文献   
66.
为了探索重污染河流的治理技术,2011年3月在无锡市新区鸿山镇徐塘桥河开展生态治理示范工程,通过电解技术、种植高等水生植物和构建软隔离带复合工程技术改善河流水质。实验结果表明,通过电解技术,可以迅速降低TP、氨氮(NH4+-N)和COD;但较难减少TN。通过软隔离带可以有效隔离外源污染,在较短时间内改善河流TN、TP、COD的平均水平,但是难以提高河流的生态系统稳定性。电解能够有效的降解大分子有机物,为水生植物提供良好的生长环境,之后再种植水生植物,能够进一步降低的TN、TP。通过电解一水生植物一软隔离带复合技术不仅能够全面改善河流水质的平均水平,而且能够修复水生生态系统,提高生态系统稳定性。  相似文献   
67.
为深入研究流场动力学特性对浸没式膜生物反应器系统内膜面污染的控制,应用fluent软件对浸没式膜生物反应器内气液两相流动进行了三维数值模拟研究。采用标准k-ε湍流模型和欧拉多相流模型,考察了改变曝气条件对膜面气液速度场及气含率分布的影响。模拟结果表明,在相同曝气强度下,1 mm曝气孔径下膜面气液两相的速度增加较孔径2mm、3 mm的快;曝气孔径为1 mm时,膜面的液相速度随着曝气强度的增加逐渐增大;曝气孔径为1 mm时,曝气量为5.5m3/h所形成的漩涡区较大,膜面气含率值较高且分布较均匀,气液两相接触面积较大,膜面冲刷效果较好;模拟观察到反应器底部靠近壁面局部气含率较低,不利于活性污泥中微生物的生长,需要进一步优化曝气和反应器结构。  相似文献   
68.
对内置转盘式PVDF膜生物反应器(SRMBR)处理污水工艺及膜清洗进行了研究.SRMBR处理污水可以长期稳定运行,在实验模拟污水COD为180~368 mg/L时,出水COD在运行1d后稳定在20 mg/L以内,COD去除率>93%.增大转盘式平板膜组件转速可以增大SRMBR的平衡水通量,转速从15 r/min增大到25 r/min,平衡水通量从42.5 L/(m2·h)增大到47.5L/(m2·h).在一定自吸泵停抽时间内(0~1 min),延长停抽时间有利于减缓膜污染、提高平衡水通量.对污染的膜进行水洗、水洗 碱洗、水洗 碱洗 酸洗,3种清洗方式分别使膜平衡水通量恢复至新膜平衡水通量的48.4%、83.5%、90.2%.  相似文献   
69.
淀山湖沉水植物死亡分解过程中营养物质的释放   总被引:8,自引:0,他引:8  
测定了上海淀山湖5种常见沉水植物的营养成分含量及其死亡后在好氧(DO>3.5 mg/L)或低氧(DO<3.5 mg/L)状态下分解释放TN、TP和有机物(以高锰酸盐指数计,下同)等营养物质的动态过程,并对营养物质释放强度与营养成分含量的相关性进行了分析.结果表明, 5种沉水植物中,金鱼藻的TN和TP含量最高,质量分数分别为(4.07±0.22)%和(0.99±0.09)%;好氧状态下TN和有机物的释放强度大于低氧状态,两种状态下TP的释放强度没有显著差异;TP的释放比TN快,一般需10 d左右,而TN和有机物的释放分别需要29 d和20 d左右;在好氧状态下,NO-2-N、NO-3-N和可溶性总磷酸盐的平均释放强度与植物TN含量呈显著正相关(p<0.05),NH 4-N的平均释放强度与植物TP含量呈显著正相关(p<0.05);在低氧状态下,NO-2-N的平均释放强度与植物TN含量、NO-3-N的平均释放强度与植物TP含量分别呈显著正相关(p<0.05);有机物的平均释放强度与植物TP含量呈极显著负相关(p<0.01).  相似文献   
70.
Background, Goals and Scope During the last years the miniaturization of toxicity test systems for rapid and parallel measurements of large quantities of samples has often been discussed. For unicellular algae as well as for aquatic macrophytes, fluorescence-based miniaturized test systems have been introduced to analyze photosystem II (PSII) inhibitors. Nevertheless, high-throughput screening should also guarantee the effect detection of a broad range of toxicants in order to ensure routinely applicable, high-throughput measuring device experiments which can cover a broad range of toxicants and modes of action others than PSII inhibition. Thus, the aim of this study was to establish a fast and reproducible measuring system for non-PSII inhibitors for aquatic macrophyte species to overcome major limitations for use. Methods A newly developed imaging pulse-amplitude-modulated chlorophyll fluorometer (I-PAM) was applied as an effect detector in short-term bioassays with the aquatic macrophyte species Lemna minor. This multiwell-plate based measuring device enabled the incubation and measurement of up to 24 samples in parallel. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal care products (PPCPs), which are often detected in the aquatic environment. The I-PAM was used (i) to establish and validate the sensitivity of the test system to the three non-PSII inhibitors, (ii) to compare the test systems with standardized and established biotests for aquatic macrophytes, and (iii) to define necessary time scales in aquatic macrophyte testing. For validation of the fluorescence-based assay, the standard growth test with L. minor (ISO/DIS 20079) was performed in parallel for each chemical. Results The results revealed that fluorescence-based measurements with the I-PAM allow rapid and parallel analysis of large amounts of aquatic macrophyte samples. The I-PAM enabled the recording of concentration-effect-curves with L. minor samples on a 24-well plate with single measurements. Fluorescence-based concentration-effect-curves could be detected for all three chemicals after only 1 h of incubation. After 4–5 h incubation time, the maximum inhibition of fluorescence showed an 80–100% effect for the chemicals tested. The EC50 after 24 h incubation were estimated to be 0.06 mg/L, 0.84 mg/L and 1.69 mg/L for paraquatdichloride, alizarine and triclosan, respectively. Discussion The results obtained with the I-PAM after 24 h for the herbicide paraquat-dichloride and the polycyclic aromatic hydrocarbon alizarine were in good accordance with median effective concentrations (EC50s) obtained by the standardized growth test for L. minor after 7 d incubation (0.09 mg/L and 0.79 mg/L for paraquat-dichloride and alizarine, respectively). Those results were in accordance with literature findings for the two chemicals. In contrast, fluorescence-based EC50 of the antimicrobial agent triclosan proved to be two orders of magnitude greater when compared to the standard growth test with 7 d incubation time (0.026 mg/L) as well as with literature findings. Conclusion Typically, aquatic macrophyte testing is very time consuming and relies on laborious experimental set-ups. The I-PAM measuring device enabled fast effect screening for the three chemicals tested. While established test systems for aquatic macrophytes need incubation times of ≥ 7 d, the I-PAM can detect inhibitory effects much earlier (24 h), even if inhibition of chemicals is not specifically associated with PSII. Thus, the fluorescence-based bioassay with the I-PAM offers a promising approach for the miniaturization and high-throughput testing of chemicals with aquatic macrophytes. For the chemical triclosan, however, the short-term effect prediction with the I-PAM has been shown to be less sensitive than with long-term bioassays, which might be due to physicochemical substance properties such as lipophilicity. Recommendations and Perspectives The results of this study show that the I-PAM represents a promising tool for decreasing the incubation times of aquatic macrophyte toxicity testing to about 24 h as a supplement to existing test batteries. The applicability of this I-PAM bioassay on emergent and submerged aquatic macrophyte species should be investigated in further studies. Regarding considerations that physicochemical properties of the tested substances might play an important role in microplate bioassays, the I-PAM bioassay should either be accompanied by evaluating physicochemical properties modeled from structural information prior to an experimental investigation, or by intensified chemical analyses to identify and determine nominal concentrations of the toxicants tested. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, PAHs and PPCPs which are often detected in the aquatic environment. Nevertheless, in order to ensure a routinely applicable measuring device, experiments with a broader range of toxicants and samples of surface and/or waste waters are necessary. ESS-Submission Editor: Dr. Markus Hecker (MHecker@Entrix.com)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号