首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   42篇
废物处理   1篇
环保管理   1篇
综合类   1篇
基础理论   113篇
评价与监测   1篇
灾害及防治   1篇
  2023年   4篇
  2022年   9篇
  2021年   7篇
  2020年   7篇
  2019年   7篇
  2018年   8篇
  2017年   11篇
  2016年   14篇
  2015年   9篇
  2014年   9篇
  2013年   10篇
  2011年   8篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1990年   1篇
排序方式: 共有118条查询结果,搜索用时 265 毫秒
61.
The ability of private conservation organizations to remain financially viable is a key factor influencing their effectiveness. One‐third of financially motivated private‐land conservation areas (PLCAs) surveyed in South Africa are unprofitable, raising questions about landowners’ abilities to effectively adapt their business models to the socioeconomic environment. In any complex system, options for later adaptation can be constrained by starting conditions (path dependence). We tested 3 hypothesized drivers of path dependence in PLCA ecotourism and hunting business models: (H1) the initial size of a PLCA limits the number of mammalian game and thereby predators that can be sustained; (H2) initial investments in infrastructure limit the ability to introduce predators; and (H3) rainfall limits game and predator abundance. We further assessed how managing for financial stability (optimized game stocking) or ecological sustainability (allowing game to fluctuate with environmental conditions) influenced the ability to overcome path dependence. A mechanistic PLCA model based on simple ecological and financial rules was run for different initial conditions and management strategies, simulating landowner options for adapting their business model annually. Despite attempts by simulated landowners to increase profits, adopted business models after 13 years were differentiated by initial land and infrastructural assets, supporting H1 and H2. A conservation organization's initial assets can cause it to become locked into a financially vulnerable business model. In our 50‐year simulation, path dependence was overcome by fewer of the landowners who facilitated natural ecological variability than those who maintained constant hunting rates and predator numbers, but the latter experienced unsustainably high game densities in low rainfall years. Management for natural variability supported long‐term ecological sustainability but not shorter term socioeconomic sustainability for PLCAs. Our findings highlight trade‐offs between ecological and economic sustainability and suggest a role for governmental support of the private conservation industry.  相似文献   
62.
The European Union's Natura 2000 (N2000) is among the largest international networks of protected areas. One of its aims is to secure the status of a predetermined set of (targeted) bird and butterfly species. However, nontarget species may also benefit from N2000. We evaluated how the terrestrial component of this network affects the abundance of nontargeted, more common bird and butterfly species based on data from long-term volunteer-based monitoring programs in 9602 sites for birds and 2001 sites for butterflies. In almost half of the 155 bird species assessed, and particularly among woodland specialists, abundance increased (slope estimates ranged from 0.101 [SD 0.042] to 3.51 [SD 1.30]) as the proportion of landscape covered by N2000 sites increased. This positive relationship existed for 27 of the 104 butterfly species (estimates ranged from 0.382 [SD 0.163] to 4.28 [SD 0.768]), although most butterflies were generalists. For most species, when land-cover covariates were accounted for these positive relationships were not evident, meaning land cover may be a determinant of positive effects of the N2000 network. The increase in abundance as N2000 coverage increased correlated with the specialization index for birds, but not for butterflies. Although the N2000 network supports high abundance of a large spectrum of species, the low number of specialist butterflies with a positive association with the N2000 network shows the need to improve the habitat quality of N2000 sites that could harbor open-land butterfly specialists. For a better understanding of the processes involved, we advocate for standardized collection of data at N2000 sites.  相似文献   
63.
A species is not native outside its native range, but native range is not precisely defined. The invasion literature contains wide discussion of the core concepts such as naturalization, invasiveness, and ecological impact, but the concept of native range has received so little attention that a formal definition does not exist. I considered, among other impediments to a formal definition of native range, the sometimes arbitrariness of the spatial and temporal limits assigned to native range. Broad questions that remain include whether invasion theory can be used to define the native range for species without non-native ranges.  相似文献   
64.
Conservation efforts to protect forested landscapes are challenged by climate projections that suggest substantial restructuring of vegetation and disturbance regimes in the future. In this regard, paleoecological records that describe ecosystem responses to past variations in climate, fire, and human activity offer critical information for assessing present landscape conditions and future landscape vulnerability. We illustrate this point drawing on 8 sites in the northwestern United States, New Zealand, Patagonia, and central and southern Europe that have undergone different levels of climate and land‐use change. These sites fall along a gradient of landscape conditions that range from nearly pristine (i.e., vegetation and disturbance shaped primarily by past climate and biophysical constraints) to highly altered (i.e., landscapes that have been intensely modified by past human activity). Position on this gradient has implications for understanding the role of natural and anthropogenic disturbance in shaping ecosystem dynamics and assessments of present biodiversity, including recognizing missing or overrepresented species. Dramatic vegetation reorganization occurred at all study sites as a result of postglacial climate variations. In nearly pristine landscapes, such as those in Yellowstone National Park, climate has remained the primary driver of ecosystem change up to the present day. In Europe, natural vegetation–climate–fire linkages were broken 6000–8000 years ago with the onset of Neolithic farming, and in New Zealand, natural linkages were first lost about 700 years ago with arrival of the Maori people. In the U.S. Northwest and Patagonia, the greatest landscape alteration occurred in the last 150 years with Euro‐American settlement. Paleoecology is sometimes the best and only tool for evaluating the degree of landscape alteration and the extent to which landscapes retain natural components. Information on landscape‐level history thus helps assess current ecological change, clarify management objectives, and define conservation strategies that seek to protect both natural and cultural elements.  相似文献   
65.
A significant limitation in biodiversity conservation has been the effective implementation of laws and regulations that protect species’ habitats from degradation. Flexible, efficient, and effective monitoring and enforcement methods are needed to help conservation policies realize their full benefit. As remote sensing data become more numerous and accessible, they can be used to identify and quantify land-cover changes and habitat loss. However, these data remain underused for systematic conservation monitoring in part because of a lack of simple tools. We adapted 2 algorithms that automatically identify differences between pairs of images. We used free, publicly available satellite data to evaluate their ability to rapidly detect land-cover changes in a variety of land-cover types. We compared algorithm predictions with ground-truthed results at 100 sites of known change in the United States. We also compared algorithm predictions to manually created polygons delineating anthropogenic change in 4 case studies involving imperiled species’ habitat: oil and gas development in the range of the Greater Sage Grouse (Centrocercus urophasianus); sand mining operations in the range of the dunes sagebrush lizard (Sceloporus arenicolus); loss of Piping Plover (Charadrius melodus) coastal habitat after Hurricane Michael (2018); and residential development in St. Andrew beach mouse (Peromyscus polionotus peninsularis) habitat. Both algorithms effectively discriminated between pixels corresponding to land-cover change and unchanged pixels as indicated by area under a receiver operating characteristic curve >0.90. The algorithm that was most effective differed among the case-study habitat types, and both effectively delineated habitat loss as indicated by low omission (min. = 0.0) and commission (min. = 0.0) rates, and moderate polygon overlap (max. = 47%). Our results showed how these algorithms can be used to help close the implementation gap of monitoring and enforcement in biodiversity conservation. We provide a free online tool that can be used to run these analyses ( https://conservationist.io/habitatpatrol ).  相似文献   
66.
Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long‐term inertia and short‐term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management‐decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers’ actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time‐scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long‐term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short‐sighted behavior to make it less appealing. Additional application of these tools and long‐term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed.  相似文献   
67.
Human–wildlife conflict (HWC) is a key topic in conservation and agricultural research. Decision makers need evidence-based information to design sustainable management plans and policy instruments. However, providing objective decision support can be challenging because realities and perceptions of human–wildlife interactions vary widely between and within rural, urban, and peri-urban areas. Land users who incur costs through wildlife argue that wildlife-related losses should be compensated and that prevention should be subsidized. Supporters of human–wildlife coexistence policies, such as urban-dwelling people, may not face threats to their livelihoods from wildlife. Such spatial heterogeneity in the cost and benefits of living with wildlife is germane in most contemporary societies. This Special Section features contributions on wildlife-induced damages that range from human perspectives (land use, psychology, governance, local attitudes and perceptions, costs and benefits, and HWC and coexistence theory) to ecological perspectives (animal behavior). Building on current literature and articles in this section, we developed a conceptual model to help frame HWC and coexistence dimensions. The framework can be used to determine damage prevention implementation levels and approaches to HWC resolution. Our synthesis revealed that inter- and transdisciplinary approaches and multilevel governance approaches can help stakeholders and institutions implement sustainable management strategies that promote human–wildlife coexistence.  相似文献   
68.
To help stem the continuing decline of biodiversity, effective transfer of technology from resource‐rich to biodiversity‐rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource‐rich to biodiversity‐rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one‐to‐many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure‐state‐response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in‐depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation.  相似文献   
69.
{en} Over the past decades, much research has focused on understanding the critical factors for marine extinctions with the aim of preventing further species losses in the oceans. Although conservation and management strategies are enabling several species and populations to recover, others remain at low abundance levels or continue to decline. To understand these discrepancies, we used a published database on abundance trends of 137 populations of marine mammals worldwide and compiled data on 28 potentially critical factors for recovery. We then applied random forests and additive mixed models to determine which intrinsic and extrinsic factors are critical for the recovery of marine mammals. A mix of life‐history characteristics, ecological traits, phylogenetic relatedness, population size, geographic range, human impacts, and management efforts explained why populations recovered or not. Consistently, species with lower age at maturity and intermediate habitat area were more likely to recover, which is consistent with life‐history and ecological theory. Body size, trophic level, social interactions, dominant habitat, ocean basin, and habitat disturbance also explained some differences in recovery patterns. Overall, a variety of intrinsic and extrinsic factors were important for species’ recovery, pointing to cumulative effects. Our results provide insight for improving conservation and management strategies to enhance recoveries in the future.  相似文献   
70.
The contribution of renewable energy to meet worldwide demand continues to grow. Wind energy is one of the fastest growing renewable sectors, but new wind facilities are often placed in prime wildlife habitat. Long‐term studies that incorporate a rigorous statistical design to evaluate the effects of wind facilities on wildlife are rare. We conducted a before‐after‐control‐impact (BACI) assessment to determine if wind facilities placed in native mixed‐grass prairies displaced breeding grassland birds. During 2003–2012, we monitored changes in bird density in 3 study areas in North Dakota and South Dakota (U.S.A.). We examined whether displacement or attraction occurred 1 year after construction (immediate effect) and the average displacement or attraction 2–5 years after construction (delayed effect). We tested for these effects overall and within distance bands of 100, 200, 300, and >300 m from turbines. We observed displacement for 7 of 9 species. One species was unaffected by wind facilities and one species exhibited attraction. Displacement and attraction generally occurred within 100 m and often extended up to 300 m. In a few instances, displacement extended beyond 300 m. Displacement and attraction occurred 1 year after construction and persisted at least 5 years. Our research provides a framework for applying a BACI design to displacement studies and highlights the erroneous conclusions that can be made without the benefit of adopting such a design. More broadly, species‐specific behaviors can be used to inform management decisions about turbine placement and the potential impact to individual species. Additionally, the avoidance distance metrics we estimated can facilitate future development of models evaluating impacts of wind facilities under differing land‐use scenarios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号