首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   9篇
  国内免费   42篇
安全科学   2篇
废物处理   1篇
环保管理   7篇
综合类   72篇
基础理论   3篇
污染及防治   17篇
评价与监测   6篇
社会与环境   1篇
  2023年   4篇
  2022年   4篇
  2021年   4篇
  2020年   7篇
  2019年   10篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   9篇
  2013年   9篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   6篇
  2007年   1篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   2篇
排序方式: 共有109条查询结果,搜索用时 31 毫秒
91.
污水生物脱氮硝化阶段是温室气体一氧化二氮(N2O)的重要释放源。采用连续流反应器在2种进水氨氮(NH4-N,低氮反应器60 mg/L和高氮反应器180 mg/L)浓度条件下驯化硝化菌,并研究了不同初始NH4-N浓度和不同初始亚硝酸盐(NO2-N)浓度条件下所驯化硝化菌释放N2O的特征。结果表明在反应器运行过程中2个反应器释放N2O较少,均小于去除NH4-N浓度的0.01%;N2O的释放均随着初始NH4-N浓度或初始NO2-N浓度的升高而增加;不同初始NH4-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在0.51%~1.40%之间,高氮反应器驯化硝化菌在0.29%~1.27%之间;不同初始NO2-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在1.38%~3.78%之间,高氮反应器驯化硝化菌在1.16-5.81%之间。  相似文献   
92.
连续流动分析-分光光度法测定水和废水中总氮   总被引:1,自引:0,他引:1  
连续流动分析-分光光度法测定水和废水中总氮进行方法适用性验证,6家验证单位验证数据表明:方法在0 mg/L~10.0 mg/L范围内线性良好,相关系数为0.9996~0.9999;方法检出限为0.04 mg/L,测定下限为0.16 mg/L;6家实验室测定总氮标准溶液 RSD为0.4%~9.6%,测定总氮有证标准物质的结果在允许范围内,实际水样的加标回收率为92.0%~111%。该方法与国标方法同时测定多种类型的水样,结果无显著差异。探讨了影响该方法测定的干扰因素和消除方法,并提出方法应用要点。  相似文献   
93.
针对碳源偏低的城市污水,文章采用厌氧/限氧的连续流活性污泥反应器,控制水力停留时间为14 h,污泥回流比为1,COD为80~180 mg/L、TP为8.95~12.25 mg/L、NH_4~+-N为30~33.5 mg/L,考察溶解氧(DO)和二沉池沉淀时间对亚硝化/反硝化同步反应的影响,并对系统微生物菌群进行研究分析。结果表明,污泥中AOB与NDPAOs 2种菌群属类的配比为1.113时,DO范围在0.4~0.7 mg/L,二沉池沉淀时间为3 h,A/OLA连续流中亚硝化和反硝化2个生化反应平衡,脱氮除磷效果最佳,TP的去除率为98.32%,TN的去除率为98.61%。  相似文献   
94.
采用无人值守连续流动分析法对地表水和废水中氨氮进行检测,该方法在0.00~10.0 mg/L范围内线性良好,检出限为0.015 mg/L,相对标准偏差为0.6%~1.4%,实际样品加标回收率为95.0%~105%,精密度和准确度均满足地表水和废水中氨氮测定的要求,有较好的应用推广价值.无人值守连续流动分析法相对于传统的手工方法具有明显的优势:在线蒸馏装置可以完成对水中氨氮的蒸馏提取;节省时间,即使在夜间也能自动工作,分析完成样品后自动清洗管路并关机;试剂使用量少,降低了对环境和分析人员的危害.  相似文献   
95.
以生活污水为原水,在常温(25-33℃)条件下采用连续流改进A2/O反应器进行脱氮除磷实验研究。系统内COD降解,TN与TP去除主要在活性污泥段完成,而NH4+-N去除基本在生物接触氧化区完成。从中沉池出水硝态氮影响因素分析可知,选用较高的有机负荷有利于实现系统内分相培养。泥龄对实现系统内微生物异养菌和自养菌的分相培养具有关键影响。当泥龄〈10 d,可实现系统内异养菌与自养菌的分相培养。  相似文献   
96.
为探究碳源类型在反硝化过程中对氮素转化和微生物群落组成的影响,分别建立R1(以C6H12O6为碳源)和R2(以CH3COONa为碳源)反应器,通过分析R1和R2反应器中反硝化过程的氮素转化情况,评价C6H12O6和CH3COONa对脱氮效果的影响,并运用动力学模型对R1和R2反应器中反硝化能力进行评价;同时,采用高通量测序技术表征2种碳源对反应器中微生物群落结构和多样性的影响.结果表明:①运行后期的R1、R2反应器中单位生物量的反硝化速率(以NO3--N计,下同)分别为8.56、11.26 mg/(g·h),R1反应器中NO2--N累积平均值为11.34 mg/L,显著高于R2反应器(0.20 mg/L),且R1反应器中NH4+-N累积平均值为6.58 mg/L,是R2反应器(0.65 mg/L)的10.11倍.②反应器中NO3--N还原过程均符合Haldane模型,其中R1、R2反应器中单位生物量的rmax(最大降解速率)分别为35.61、47.79 mg/(g·h),表明R2反应器中的反硝化能力强于R1反应器.③微生物经过富集后,其细菌多样性和物种丰度下降,但发挥反硝化作用的微生物相对丰度逐渐增加.R1和R2反应器中共同的优势菌门有Proteobacterias、Bacteroidetes、Firmicutes和Gracilibacters,其在R1反应器中的相对丰度依次为96.14%、2.06%、0.66%和0.47%,在R2反应器中依次为79.75%、6.88%、9.47%和2.13%,优势菌门在不同运行时间的丰度表达上存在消长变化状态.研究显示,C6H12O6和CH3COONa在反硝化过程的氮素转化上存在明显差异,对各类优势菌群的相对丰度有明显影响.   相似文献   
97.
针对复合污染体系对污染物处理效果的影响问题,以限氧裂解法制备的污泥基生物炭(SSB)为吸附剂,探索其在不同污染体系下的吸附性能变化.基于污泥基生物炭构建固定床系统,研究连续流条件下复合污染体系(Zn2+、NH4+、H2PO4-)对Pb2+在固定床动态吸附行为的影响,对比不同体系下系统运行参数的变化.结果表明:①不同复合体系均对SSB的Pb2+吸附效果产生抑制作用,其影响大小为NH4+ > Zn2+ > H2PO4-.而三元/四元复合污染体系中,H2PO4-的加入会减弱复杂体系对Pb2+的吸附抑制作用.②固定床系统中,不同复合体系对吸附穿透曲线参数的影响顺序为Pb2+-Zn2+-NH4+-H2PO4- > Pb2+-Zn2+-H2PO4- > Pb2+-Zn2+-NH4+ > Pb2+-NH4+-H2PO4-.③固定床系统动态吸附量(qd)与传质区长度(H)的变化分析均显示,复合污染体系会降低固定床吸附性能.④数据拟合结果表明,相比于Yoon-Nelson模型,Thomas模型能更好地描述Pb2+在复合体系中的动态吸附过程,但复合污染会限制动态吸附模型的应用,导致模型预测不准确.研究显示,复合污染体系会显著影响吸附剂在连续流状态下的吸附性能,有选择地处理特定污染物可以减少复合污染体系对净化效果的干扰.   相似文献   
98.
99.
设计了层状底泥的连续流动培养实验装置,经调试后用于对珠江广州河段的沉积物样品进行连续流动培养实验.通过检测培养出水和稳定状态时硝氮还原速率和氨氮生成速率,运用Michaelis-Menten方程计算珠江底泥的潜在硝氮还原速率和氨氮生成速率,并结合氨氮生成和硝氮还原理论配比分析硝氮还原的主要途径.结果显示,珠江广州河段整体的潜在硝氮还原速率为1410 nmol.(h.mL)-1,硝氮还原动力参数为5.0 mmol.L-1;潜在氨氮生成速率为0.665 nmol.(h.mL)-1,氨氮生成动力参数为0.137 mmol.L-1;厌氧氨氧化作用和硝氮异化还原作用是珠江底泥中硝氮还原的主要途径.  相似文献   
100.
苏翌  袁林江 《环境科学研究》2011,24(12):1422-1429
为了回收污水中的有机物、氮和磷以便资源化,在工艺流程为好氧活化-好氧吸附-厌氧释放连续流处理系统中,研究了浓缩污泥对模拟生活污水中污染物的吸附及污泥中污染物的厌氧释放,确定了活化浓缩污泥所需时间,揭示了吸附段HRT对污泥吸附效果的影响及厌氧释放段pH对污泥中污染物释出的影响. 结果表明,污水厂浓缩污泥好氧活化120 min以上即可提高其对污染物的吸附/吸收能力. 控制吸附段HRT为25~50 min和污泥负荷〔Ns,为投配CODCr量(kg)/污泥量(kg·d)〕为3~5 kg/(kg·d),系统运行良好. 活化污泥对CODCr,NH4+-N和PO43--P的最大去除率分别为86.78%,64.78%和75.5%. 在连续厌氧释放段,pH对各污染物释放的影响不尽相同,在pH为11.0,SRT为3 d的条件下,CODCr,NH4+-N和PO43--P分别被浓缩了3.6,1.3和8.4倍.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号