首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   993篇
  免费   44篇
  国内免费   107篇
安全科学   36篇
废物处理   39篇
环保管理   77篇
综合类   370篇
基础理论   147篇
污染及防治   249篇
评价与监测   196篇
社会与环境   23篇
灾害及防治   7篇
  2024年   1篇
  2023年   18篇
  2022年   21篇
  2021年   25篇
  2020年   32篇
  2019年   27篇
  2018年   25篇
  2017年   27篇
  2016年   29篇
  2015年   28篇
  2014年   47篇
  2013年   83篇
  2012年   52篇
  2011年   89篇
  2010年   45篇
  2009年   81篇
  2008年   115篇
  2007年   92篇
  2006年   60篇
  2005年   37篇
  2004年   31篇
  2003年   40篇
  2002年   29篇
  2001年   16篇
  2000年   24篇
  1999年   11篇
  1998年   11篇
  1997年   7篇
  1996年   8篇
  1995年   9篇
  1994年   12篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
排序方式: 共有1144条查询结果,搜索用时 921 毫秒
991.
To investigate the characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) and its chemical compositions in the Beijing-Tianjin-Hebei (BTH) region of China during the novel coronavirus disease (COVID-19) lockdown, the ground-based data of PM2.5, trace gases, water-soluble inorganic ions, and organic and elemental carbon were analyzed in three typical cities (Beijing, Tianjin, and Baoding) in the BTH region of China from 5-15 February 2020. The PM2.5 source apportionment was established by combining the weather research and forecasting model and comprehensive air quality model with extensions (WRF-CAMx). The results showed that the maximum daily PM2.5 concentration reached the heavy pollution level (>150 μg/m3) in the above three cities. The sum concentration of SO42−, NO3 and NH4+ played a dominant position in PM2.5 chemical compositions of Beijing, Tianjin, and Baoding; secondary transformation of gaseous pollutants contributed significantly to PM2.5 generation, and the secondary transformation was enhanced as the increased PM2.5 concentrations. The results of WRF-CAMx showed obviously inter-transport of PM2.5 in the BTH region; the contribution of transportation source decreased significantly than previous reports in Beijing, Tianjin, and Baoding during the COVID-19 lockdown; but the contribution of industrial and residential emission sources increased significantly with the increase of PM2.5 concentration, and industry emission sources contributed the most to PM2.5 concentrations. Therefore, control policies should be devoted to reducing industrial emissions and regional joint control strategies to mitigate haze pollution.  相似文献   
992.
Soil macroinvertebrates as ecosystem engineers play significant, but largely ignored, roles in affecting mercury (Hg) cycle by altering soil physical-chemical properties. Ant is likely expanded into boreal mires with climate warming, however, its impacts on Hg cycle remained poorly understood. We compared total Hg (THg) and methylmercury (MeHg) contents in soils from antmounds (Lasius flavus) and the nearby ambient in a boreal mire in Northeast China. The present work seeks to unravel factors that controlling MeHg levels in case of ant appearance or absence. The average THg was 179 µg/kg in the ant mound and was 106.1 µg/kg in nearby soils, respectively. The average MeHg was 10.9 µg/kg in the ant mound and was 12.9 µg/kg in nearby soils, respectively. The ratios of MeHg to THg (%MeHg) were 7.61% in ant mounds and 16.75% in nearby soils, respectively. Ant colonization caused THg enrichment and MeHg depletion, and this change was obvious in the 10-20 cm depth soil layer where ants mainly inhabited. Spectrometry characteristics of soil dissolved organic matter (DOM) exert a stronger control than microorganisms on MeHg variation in soils. A structural equation model revealed that the molecular weight of DOM inhibited MeHg irrespective of ant presence or absence, while humification conducive to MeHg significantly in ant mound soils. Microorganisms mainly affected Hg methylation by altering the molecular weight and humification of DOM. We propose that the effects of ant colonization on MeHg rested on DOM feature variations caused by microorganisms in boreal mires.  相似文献   
993.
Ever-increasing heavy metal accumulation in the urban environment of Guangzhou, the largest light industrial production base and one of the most rapidly developing cities in China, poses a serious threat to environment as well as to human health in the region. As a sink or source, urban deposits are good indicators of the level and extent of heavy metal accumulation in the surface environment. The aim of this preliminary study was to examine the distribution of heavy metal contamination in the urban environment of Guangzhou. It was based on a systematic sampling of road dusts and corresponding gully sediments along major roads running mainly through commercial and residential to industrial districts of the city. In addition to road dusts and gully sediments, ceiling dusts from the Pearl River Tunnel were also collected to characterize anthropogenic emissions dominated by traffic-related activities. In general, the level of Cd, Cu, Pb and Zn contaminations were more severe on the industrialized side of Guangzhou than on the western side where heavy traffic and industrial activities were limited. The primary determinants of the level of heavy metal contamination and the distribution of this contamination in the urban environment of Guangzhou were the site-specific conditions of its urban setting, particularly the types of industries, the nature of the traffic flow, sample residence times and variations in grain size of the particulate contaminants. This study highlights the complexity of the urban system and indicates that in just such a system individual urban components should be interlinked to assess the long-term environmental and health effects of heavy metal contamination. Among the heavy metals tested – Cd, Cu, Pb and Zn – the level of Zn contamination was the most severe and widespread, and thus requires immediate attention.  相似文献   
994.
Seaweeds belonging to 14 different genera of Chlorophyta, Phaeophyta, and Rhodophyta were analysed to determine the levels of heavy metals in two areas of the Egyptian Red Sea coast. Among the trace metals analysed, Mn and Zn showed the highest mass concentrations in the surface sea waters of the two studied areas. However, algae obtained from the Suez area had higher concentrations of the investigated heavy metals than those collect in the Mars Alam area. Nevertheless, a high variability of the metal levels occurs among the studied algae and also between the investigated areas. Moreover, Zn was the most abundant metal in the seaweeds of the Suez area, while Pb was predominant in the Mars Alam area in red and brown algae. Liagora spp. had the highest average concentration factor of Zn in Suez (29 161-fold), while the average concentration factor in Enteromorpha spp. at Mars Alam was 20 091-fold. The highest Metal Pollution Index (MPI) value was recorded in Liagora spp. (22.0) at Suez. This represents a 4.6-fold higher value than that recorded in Liagora spp. at Mars Alam. Among green, brown, and red algae in Suez, the highest values of MPI were recorded in Cladophora spp. and Halimeda spp. (18.2 and 18.3), Padina spp. (16.2), and Liagora spp. (22.1), respectively; while at Mars Alam, the highest values of MPI were recorded in Cladophora spp. (6.6), Padina spp. (3.4) and Liagora spp. (4.8), respectively.  相似文献   
995.
This study reports on the quantification of horizontal erosion by undermining of slopes in the atlantic mesotidal salt marshes of Odiel, SW Spain, and analyses its causes and consequences. Horizontal erosion has produced considerable losses of salt marsh area, including zones of mature salt marsh. Human pressure, such as from water-borne traffic or the exploitation of the slopes for the capture of bait, increases the natural erosion processes. The role of vegetation in protecting the slopes against erosion is studied. Channel banks covered with plants, many of which belong to species with long-living, above-ground creeping stems, were less eroded than those without vegetation cover. The enormous volume of sediments moved (ca. 7000m3 in one year) could contribute to the silting-up of the navigable channels of the estuary, so that continual dredging is necessary to allow access to shipping. These sediments are highly contaminated, and dredging exposes them more directly to the trophic network of the estuary. There is a considerable loss of natural resources. Finally, the integrated management of this coastal ecosystem is discussed.  相似文献   
996.
Levels of lead, zinc, cadmium, copper and nickel were determined in roadside moss samples within towns in the northern and south-eastern regions of Nigeria. Average lead level in the south-east (59 ppm) was higher than the average for the northern region (44 ppm). Average levels of zinc, cadmium, copper and nickel did not differ significantly between the two regions, with overall averages for the entire study area being 50.9, 1.2, 11.3 and 5.6 ppm for these metals. Lead levels were poorly correlated with those of the other metals, indicating that automobile emissions may not be the main source for these metals in the moss. In comparison with a previous study of the south-west region, the results indicate a generally slightly higher level of metal pollution in the south-west region than in both the northern and south-eastern regions.  相似文献   
997.
This study was conducted to investigate the effects of soil properties on the heavy metal accumulation in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) at the field scale. The concentrations of cadmium (Cd), mercury (Hg), and chromium (Cr) in topsoil and vegetable samples from Nanhai district of Foshan city in the Pearl River Delta (PRD) were analyzed. The results showed that 56.5% of the soil samples exceeded the grade II of the Chinese Soil Environmental Quality Standard (GB 15618-1995) for Hg concentrations, while 8.70% and 17.4% of the vegetable samples exceeded the criteria of the Chinese Safety Qualification of Agricultural Products (GB 18406.1-2001) for Cd and Hg concentrations, respectively. The calculated bio-concentration factor (BCF; i.e., the ratio of the metal concentration in the edible parts of flowering Chinese cabbage to that in soil) values were ranked as: Cd (0.1415) > Cr (0.0061) > Hg (0.0012) (p < 0.01), which demonstrated that Cd was easier to be accumulated in the edible parts of flowering Chinese cabbage than Hg and Cr. Furthermore, the following relationships between (bio-concentration factor) BCF values (BCFs) and soil physicochemical properties were concluded from our results: i) the mean BCFs of coarse-textured soils were higher than those of fine-textured soils; ii) the BCFs decreased with increasing soil pH; iii) the soils with high organic matter(OM) and Cation exchange capacity (CEC) have low BCFs, resulting from their high sorption capacities for Cd, Hg, and Cr. The stepwise linear multiple regression analyses showed that total metal concentrations and available calcium in soils were two main factors controlling the accumulation of Cd, Hg, and Cr in the flowering Chinese cabbage.  相似文献   
998.
Application of greenwaste compost to brownfield land is increasingly common in soil and landscape restoration. Previous studies have demonstrated both beneficial and detrimental effects of this material on trace element mobility. A pot experiment with homogenised soil/compost investigated distribution and mobility of trace elements, two years after application of greenwaste compost mulch to shallow soils overlying a former alkali-works contaminated with Pb, Cu and As (∼900, 200 and 500 mg kg−1, respectively). Compost mulch increased organic carbon and Fe in soil pore water, which in turn increased As and Sb mobilization; this enhanced uptake by lettuce and sunflower. A very small proportion of the total soil trace element pool was in readily-exchangeable form (<0.01% As, <0.001% other trace elements), but the effect of compost on behaviour of metals was variable and ambiguous. It is concluded that greenwaste compost should be applied with caution to multi-element contaminated soils.  相似文献   
999.
Zhang W  Zhuang L  Tong L  Lo IM  Qiu R 《Chemosphere》2012,86(8):809-816
Cr(VI) was often reported to oxidize soil organic matter at acidic environments due to its high ORP, probably thus changing cationic metal species bound to soil organic matter, and influencing their electro-migration patterns. However, such an effect on the electro-migration was not confirmed in most previous studies. Therefore, this study applied a fixed voltage direct current field on an aged electroplating contaminated clayed soil, with a special interest in the direct or indirect influence of Cr(VI) on the electro-migration of other coexisting metals. After 353 h electrokinetic process, 81% of Zn, 53% of Ni and 22% of Cu in the original soil were electro-migrated into the electrolyte, and most of the remaining concentrated near the cathode. The Cr(VI) oxidized some soil organic matter along its migration pathway, with a pronounced reaction occurred near the anode at low pHs. The resulting Cr(III) reversed its original movement, and migrated towards the cathode, leading to the occurrence of a second Cr concentration peak in the soil. Metal species analyses showed that the amount of metals bound to soil organic matter significantly decreased, while a substantial increase in the Cr species bound to Fe/Mn (hydro-)oxides was observed, suggesting an enhancement of cationic metal electro-migration by the reduction of Cr(VI) into Cr(III). However, the Cr(VI) may form some stable lead chromate precipitates, and in turn demobilize Pb in the soil, as the results showed a low Pb removal and an increase in its acid-extractable and residual fractions after electrokinetic remediation.  相似文献   
1000.
研究了饱和温度为200 ℃的水热条件下绿矾对垃圾焚烧飞灰中重金属的稳定效果,并与常温常压下的稳定效果进行了对比.研究结果表明,高温水热条件有利于Pb特别是Cr(Ⅵ)的稳定,对Cd的稳定无明显影响,同时绿矾的用量大为降低,降低了药剂的成本.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号