首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2413篇
  免费   357篇
  国内免费   1376篇
安全科学   285篇
废物处理   312篇
环保管理   208篇
综合类   2342篇
基础理论   286篇
污染及防治   636篇
评价与监测   41篇
社会与环境   16篇
灾害及防治   20篇
  2024年   3篇
  2023年   63篇
  2022年   100篇
  2021年   136篇
  2020年   125篇
  2019年   113篇
  2018年   116篇
  2017年   115篇
  2016年   130篇
  2015年   171篇
  2014年   178篇
  2013年   201篇
  2012年   268篇
  2011年   234篇
  2010年   178篇
  2009年   214篇
  2008年   129篇
  2007年   241篇
  2006年   273篇
  2005年   194篇
  2004年   161篇
  2003年   152篇
  2002年   131篇
  2001年   97篇
  2000年   92篇
  1999年   64篇
  1998年   51篇
  1997年   43篇
  1996年   28篇
  1995年   28篇
  1994年   26篇
  1993年   29篇
  1992年   17篇
  1991年   12篇
  1990年   7篇
  1989年   8篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有4146条查询结果,搜索用时 187 毫秒
991.
针对某木材加工企业生产废水高COD、高氨氮、高色度、含甲醛等特点,采用“芬顿氧化+A/O+沉淀+气浮”组合工艺对原废水处理厂进行扩容提标改造。该工程设计处理规模为600 t/d,总投资为340万元,直接运行成本为4.83元/t。运行效果表明:采用芬顿氧化预处理洗胶废水可有效降解甲醛等高毒性的有机物,增设载体的A/O工艺可提高COD去除效果与抗冲击负荷能力,组合工艺出水COD<400 mg/L,氨氮<20 mg/L,TN<40 mg/L,TP<2 mg/L,甲醛<2 mg/L。  相似文献   
992.
目的探究三种电源模式对ADC12高硅铝合金微弧氧化膜层性能的影响,从中选择对其微弧氧化膜层性能较优的电源模式。方法在三种不同电源模式(交流电源、单极性脉冲电源和双极性脉冲电源)的条件下,应用微弧氧化(MAO)技术在ADC12高硅铝合金表面制备了陶瓷膜层,并采用扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计、摩擦磨损试验机等手段表征ADC12铝合金微弧氧化膜层的显微组织与性能。结果三种电源模式下微弧氧化膜层中都存在α-Al_2O_3、γ-Al_2O_3和Al9Si等物相;双脉冲模式下制备的微弧氧化膜层的致密性最好,厚度为15μm,硬度达到719 HV,摩擦系数为1.2左右,膜层与基体开始脱落的载荷为25.8 N。交流模式下制备的微弧氧化膜层膜厚较低,厚度为9μm,硬度达到698 HV,摩擦系数为1.35左右,膜层与基体开始脱落的载荷为19.5 N。单极性模式下制备的微弧氧化膜层厚度为17μm,但硬度为706 HV,摩擦系数为1.35左右,膜层与基体开始脱落的载荷为13.09 N。结论通过三种电源模式的比较,ADC12高硅铝合金在双极性脉冲电源模式下制得膜层的综合性能较好。  相似文献   
993.
陆明羽  李祥  黄勇  殷记强  方文烨 《环境科学》2020,41(10):4644-4652
为了推进厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)脱氮工艺在垃圾渗滤液处理方面的应用,在某垃圾填埋场建立了不同反硝化(denitrification,DN)与短程硝化-厌氧氨氧化(partial nitrification-ANAMMOX,PN-ANAMMOX)耦合模式的中试反应器处理垃圾渗滤液,探讨其耦合模式对脱氮及微生物群落结构的影响.结果表明DN+(PN-ANAMMOX)工艺可以将DN耦合入PN-ANAMMOX进行脱氮,但随着渗滤液中有机物浓度的增加,DN+(PN-ANAMMOX)工艺的PN区的需氧量增加,Nitrosomonadaceae科菌的富集受到限制.而NO2--N的供给不足进一步导致ANAMMOX区Brocadiaceae科微生物的富集也受到限制,总氮去除速率(total nitrogen removal rate,TNRR)停留在0.44 kg ·(m3 ·d)-1.而在DN-(PN-ANAMMOX)工艺中,具有反硝化能力的Saprospiraceae科菌在DN区富集,有机物主要在DN区被降解去除,为后续PN-ANAMMOX提供了良好的低碳环境.Nitrosomonadaceae科及Brocadiaceae科菌在相应的PN区及ANAMMOX区得到富集,反应器的TNRR和总氮去除率(total nitrogen removal efficiency,TNRE)也进一步提升至0.55 kg ·(m3 ·d)-1和94.65%,实现了对NH4+-N和有机物浓度分别为2233 mg ·L-1和2712 mg ·L-1渗滤液的直接处理.其中Candidatus Kuenenia菌更能适应高基质浓度的渗滤液水质,成为ANAMMOX区的优势菌属.  相似文献   
994.
基于QAR数据的飞机全航段黑碳排放量计算与分析   总被引:1,自引:0,他引:1  
黑碳气溶胶是航空发动机运行过程中产生的一种主要颗粒污染物.为评估飞机全航段的黑碳排放特性,在一阶近似方法(FOA)的基础上,提出一种基于黑碳形成和氧化过程的形成氧化法(FOX).使用GE90-115B型发动机历史QAR数据进行实例分析,结合QAR数据中燃油流量、空气燃料比、燃烧室入口温度、主燃区火焰温度等热力学参数,计算某次飞行全航段的黑碳排放量.结果表明,形成氧化法的计算结果高于一阶近似方法,巡航阶段的总排放量高于起飞着陆循环.分析表明,结合实际飞行数据的形成氧化法,考虑了发动机的性能差异、燃烧品质及外界环境条件对排放特性的影响,能够更加真实有效地评估飞机全航段的黑碳排放量,为飞机排放监测及排放的适航符合性验证等效替代提供更加准确的依据.  相似文献   
995.
高晶度Mn-Fe LDH催化剂活化过一硫酸盐降解偶氮染料RBK5   总被引:4,自引:2,他引:2  
李立  吴丽颖  董正玉  王霁  张倩  洪俊明 《环境科学》2020,41(6):2736-2745
采用改进的共沉淀结合水热法制备高晶度锰铁层状双金属氢氧化物作为催化剂,用于高效活化过一硫酸盐(PMS)降解活性黑5(RBK5).通过X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、X射线能谱分析(EDS)、傅里叶变换红外光谱仪(FTIR)以及X射线光电子能谱(XPS)对材料进行表征,证明成功合成了结晶度高、层状结构突出的Mn-Fe LDH.同时探究了锰铁量比,催化剂投加量,PMS浓度和初始pH值等因素对RBK5的吸附效果、催化降解及反应动力学的影响.结果表明,高晶度Mn-Fe LDH催化剂具有良好的吸附能力和高效的催化效率,在n(Mn)/n(Fe)比为1∶1,催化剂投加量为0.2 g·L~(-1),PMS浓度为1 mmol·L~(-1),初始pH为7时,RBK5(20 mg·L~(-1))在90 min内降解率可达86%,整个反应过程符合拟一级动力学(R~20.9).自由基猝灭实验表明,Mn-Fe LDH/PMS体系降解RBK5为SO~-_4·和·OH两种活性自由基共同作用的结果.反应前后催化剂的XPS分析表明Mn和Fe存在协同作用,Mn-Fe LDH的Mn(Ⅱ)和Fe(Ⅲ)与层间的CO~(2-)_3电荷平衡,使其层状结构稳定,从而促进了层状表面Mn和Fe的协同作用,提高了Mn-Fe LDH对PMS的活化效率.三维荧光光谱(3D-EEM)和UV-Vis扫描光谱分析初步探讨了RBK5的降解过程.  相似文献   
996.
张颖蕾  崔希民 《环境科学》2020,41(6):2617-2624
以长三角为研究区,利用AERONET地基观测的气溶胶光学厚度(AOD)数据,验证了基于MODIS_C061深蓝算法(DB)的AOD产品适用于长三角地区.并利用2000~2018年MOD04_L2产品,分析研究区AOD和Angstr?m指数(AE)的时空变化特征.结果表明,长三角地区AOD呈现东部和北部平原地区高、南部和西部山区低的空间分布,AE呈现南部地区高北部地区低的空间分布. 2003~2007年,AOD年均值增长显著,增长率为23%, 2011年以后逐渐下降; 2001~2003年,AE年均值增长迅速, 2012年以后逐渐下降.AOD在长三角地区呈现夏季最高、冬季最低的显著季节性变化,月均值6月最高达0.84, 8月最低为0.40;AE呈现秋季最高,春季最低的季节性变化,月均值9月最高达1.47, 3月最低为1.08.根据AOD与AE的关系,对长三角地区气溶胶类型进行了研究,结果表明人为产生的城市工业气溶胶是该地区主要的气溶胶类型,其次为混合型和清洁大陆型.  相似文献   
997.
羟胺对厌氧氨氧化污泥群落的影响   总被引:3,自引:2,他引:1  
目前,由于厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)过程具有高效率、低能耗和污泥量少的优点,在污水除氮方面具有广阔的应用前景.羟胺既是厌氧氨氧化代谢的中间产物,同时也是一种抑制剂,但是目前关于厌氧氨氧化细菌颗粒如何应对羟胺的压力还没有很好的解释.通过羟胺批次添加实验,发现在投加不同浓度的羟胺情况下(40~80mg·L~(-1)),厌氧氨氧化的反应活性受到了抑制作用,但是无法判断厌氧氨氧化细菌对羟胺的耐受阈值.然后基于实时荧光定量聚合酶链反应(RT-qPCR)技术检测了不同反应器内肼氧化酶(HZO)的mRNA的表达量,发现HZO酶的表达量随着羟胺浓度的增加出现先升高后降低的趋势,由此本研究推测相对于3.12g·L~(-1)的厌氧氨氧化颗粒污泥,其承受的羟胺浓度(以N计)阈值介于60~70mg·L~(-1).同时利用16S rRNA高通量测序的方法对反应器内的颗粒污泥微生物结构与功能进行分析,发现投加适量的羟胺(50mg·L~(-1))有助于增强颗粒污泥中细菌的细胞运动性,促进厌氧氨氧化细菌的组成,提供一个更佳的生态平衡.  相似文献   
998.
张丽丽  庄媛  胡春  石宝友 《环境科学学报》2020,40(12):4225-4233
多相催化氧化是一种很有前景的水深度处理技术,实际水环境中微量难降解有机污染物的去除通常受到水中共存物质如天然有机物(NOM)的影响.因此,在多相催化体系中,基于污染物与氧化媒介在催化剂表面的作用及转化过程调控催化剂的表面性质,对于复杂环境中污染物的高效靶向去除至关重要.本文主要综述了以过氧化氢、臭氧和光为媒介的多相催化氧化技术的固液微界面调控原理,以及基于固液微界面调控的水处理应用进展.重点阐述了催化剂表面性质对氧化媒介和目标污染物在表面分解和转化的影响,以及不同类型有机污染物在催化剂表面的作用原理.在此基础上,我们提出通过不同的手段极化催化剂表面,使表面电子分布不均匀,形成氧化位点和还原位点,使目标污染物失电子氧化同时活化表面吸附氧化媒介形成更多吸附态·OH,是促进复杂水环境中目标污染物高效去除的关键途径.  相似文献   
999.
王丝可  于恒  左剑恶 《环境科学》2020,41(11):5082-5088
污水生物脱氮工艺中通常会释放温室气体N2O,厌氧氨氧化工艺作为新型生物脱氮工艺,其N2O的释放规律及机制值得深入研究.本文利用厌氧氨氧化序批试验,研究了不同温度和基质浓度对厌氧氨氧化工艺中N2O释放的影响,并探讨了N2O释放的微生物机制.结果表明,厌氧氨氧化工艺中进水基质浓度的增加会促进N2O释放,在35℃条件下,当进水亚硝氮从40 mg ·L-1增加至60 mg ·L-1和120 mg ·L-1时,N2O最高积累浓度从0.5 mg ·L-1增加至1.5 mg ·L-1和2.4 mg ·L-1,分别占总氮去除量的0.85%、1.43%和1.11%.温度降低对厌氧氨氧化活性抑制作用明显,15℃下的比厌氧氨氧化活性仅为30℃时的6%.温度降低导致厌氧氨氧化工艺中N2O的释放减少,温度降低时反硝化速率的降低是导致N2O产生速率降低、N2O积累减少的主要原因.厌氧氨氧化工艺微生物群落中存在丰富的异养反硝化菌,工艺中N2O积累主要是反硝化菌产生和消耗N2O的结果.  相似文献   
1000.
采用中试ASBR反应器(530 L),以逐步提高Cl~-浓度的方式考察了厌氧氨氧化菌(An AOB)处理高盐废水的脱氮特性.结果表明,采用逐步盐度驯化的方式,An AOB可适应高盐度(Cl~-浓度10 000 mg·L~(-1))环境进行高效脱氮(TN去除率高达92. 3%).其中,在Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)两个梯度内,反应器脱氮性能受到了较大影响,但随着驯化过程的持续进行可逐步恢复.修正的Boltzmann模型能较为准确地拟合An AOB受到不同盐度抑制后的活性恢复过程,相关系数R~2均在0. 96以上.得到的Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)时的恢复中间值tc分别为28. 765 d和44. 495 d,NRRmax分别为0. 145 kg·(m~3·d)~(-1)和0. 212 kg·(m~3·d)~(-1),NRRmin分别为0. 021 kg·(m~3·d)~(-1)和0. 085 kg·(m~3·d)~(-1).高盐度驯化后,厌氧氨氧化菌仍主要为Candidatus Brocadia和Candidatus Jettenia(其丰度分别是14. 76%和2. 7%),且污泥颗粒化程度和污泥密度均有不同程度的提高,污泥呈红褐色.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号