首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12596篇
  免费   1740篇
  国内免费   7477篇
安全科学   2017篇
废物处理   486篇
环保管理   1150篇
综合类   12029篇
基础理论   2618篇
环境理论   3篇
污染及防治   2218篇
评价与监测   633篇
社会与环境   418篇
灾害及防治   241篇
  2024年   54篇
  2023年   471篇
  2022年   687篇
  2021年   802篇
  2020年   767篇
  2019年   828篇
  2018年   710篇
  2017年   661篇
  2016年   785篇
  2015年   895篇
  2014年   853篇
  2013年   1333篇
  2012年   1410篇
  2011年   1463篇
  2010年   1028篇
  2009年   1245篇
  2008年   951篇
  2007年   1090篇
  2006年   1110篇
  2005年   800篇
  2004年   654篇
  2003年   569篇
  2002年   451篇
  2001年   393篇
  2000年   340篇
  1999年   272篇
  1998年   197篇
  1997年   182篇
  1996年   156篇
  1995年   143篇
  1994年   99篇
  1993年   94篇
  1992年   71篇
  1991年   37篇
  1990年   33篇
  1989年   23篇
  1988年   17篇
  1987年   11篇
  1986年   14篇
  1985年   5篇
  1984年   7篇
  1983年   11篇
  1982年   15篇
  1981年   11篇
  1980年   7篇
  1979年   4篇
  1978年   4篇
  1973年   6篇
  1972年   5篇
  1971年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH_4~+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH_4~+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m~3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.  相似文献   
72.
Silver nanoparticles(AgNPs) have been widely used in many fields,which raised concerns about potential threats to biological sewage treatment systems.In this study,the phosphorus removal performance,enzymatic activity and microbial population dynamics in constructed wetlands(CWs) were evaluated under a long-term exposure to Ag NPs(0,50,and 200 μg/L) for 450 days.Results have shown that Ag NPs inhibited the phosphorus removal efficiency in a short-term exposure,whereas caused no obviously negative effects from a long-term perspective.Moreover,in the coexisting CW system of Ag NPs and phosphorus,competition exhibited in the initial exposure phase,however,cooperation between them was observed in later phase.Enzymatic activity of acid-phosphatase at the moderate temperature(10–20°C) was visibly higher than that at the high temperature(20–30℃) and CWs with Ag NPs addition had no appreciable differences compared with the control.High-throughput sequencing results indicated that the microbial richness,diversity and composition of CWs were distinctly affected with the extension of exposure time at different Ag NPs levels.However,the phosphorus removal performance of CWs did not decline with the decrease of polyphosphate accumulating organisms(PAOs),which also confirmed that adsorption precipitation was the main way of phosphorus removal in CWs.The study suggested that Ag NPs and phosphorus could be removed synergistically in the coexistence system.This work has some reference for evaluating the influences of Ag NPs on the phosphorus removal and the interrelation between them in CWs.  相似文献   
73.
Because of its significant toxicological effects on the environment and human health,arsenic(As) is a major global issue.In this study,an Fe-based metal-organic framework(MOF)(Materials of Institut Lavoisier:MIL-100(Fe)) which was impregnated with reduced graphene oxide(rGO) by using a simple hydrothermal method and coated with birnessitetype manganese oxide(δ-MnO_2) using the one-pot reaction process(MIL-100(Fe)/rGO/δ-MnO_2 nanocomposites) was synthesized and applied successfully in As removal.The removal efficiency was rapid,the equilibrium was achieved in 40 min and 120 min for As(Ⅲ) and As(Ⅴ),respectively,at a level of 5 mg/L.The maximum adsorption capacities of As(Ⅲ) and As(Ⅴ) at pH 2 were 192.67 mg/g and 162.07 mg/g,respectively.The adsorbent revealed high stability in pH range 2-9 and saturated adsorbent can be fully regenerated at least five runs.The adsorption process can be described by the pseudo-second-order kinetic model and Langmuir monolayer adsorption.The adsorption mechanisms consisted of electrostatic interaction,oxidation and inner sphere surface complexation.  相似文献   
74.
Based on density functional theory (DFT) and basic structure models, the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction (SCR) denitrification catalysts were summarized. Reasonable structural models (non-periodic and periodic structural models) are the basis of density functional calculations. A periodic structure model was more appropriate to represent the catalyst surface, and its theoretical calculation results were more comparable with the experimental results than a non-periodic model. It is generally believed that the SCR mechanism where NH3 and NO react to produce N2 and H2O follows an Eley-Rideal type mechanism. NH2NO was found to be an important intermediate in the SCR reaction, with multiple production routes. Simultaneously, the effects of H2O, SO2 and metal on SCR catalysts were also summarized.  相似文献   
75.
76.
Direct synthesis of dimethyl ether(DME) by CO_2 hydrogenation has been investigated over three hybrid catalysts prepared by different methods:co-precipitation,sol-gel,and solid grinding to produce mixed Cu,ZnO,ZrO_2 catalysts that were physically mixed with a commercial ferrierite(FER) zeolite.The catalysts were characterized by N_2 physisorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),temperature programmed desorption of CO_2(CO_2-TPD),temperature programmed desorption of NH_3(NH_3-TPD),and temperature programmed H2 reduction(H_2-TPR).The results demonstrate that smaller CuO and Cu crystallite sizes resulting in better dispersion of the active phases,higher surface area,and lower reduction temperature are all favorable for catalytic activity.The reaction mechanism has been studied using in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS).Methanol appears to be formed via the bidentate-formate(b-HCOO) species undergoing stepwise hydrogenation,while DME formation occurs from methanol dehydration and reaction of two surface methoxy groups.  相似文献   
77.
In the present work we compared the biological activity of DCF, 4′-OHDCF and 5-OHDCF as molecules of most biodegradation pathways of DCF and selected transformation products (2-hydroxyphenylacetic acid; 2,5-dihydroxyphenylacetic acid and 2,6-dichloroaniline) which are produced during AOPs, such as ozonation and UV/H2O2. We also examined the interaction of DCF with chlorogenic acid (CGA). CGA is commonly used in human diet and entering the environment along with waste mainly from the processing and brewing of coffee and it can be toxic for microorganisms included in activated sludge. In the present experiment the evaluation of following parameters was performed: E. coli K-12 cells viability, growth inhibition of E. coli K-12 culture, LC50 and mortality of Chironomus aprilinus, genotoxicity, sodA promoter induction and ROS generation. In addition the reactivity of E. coli SM recA:luxCDABE biosensor strain in wastewater matrices was measured. The results showed the influence of DCF, 4′-OHDCF and 5-OHDCF on E. coli K-12 cells viability and bacteria growth, comparable to AOPs by-products. The highest toxicity was observed for selected, tested AOPs by-products, in comparison to the DCF, 4′-OHDCF and 5-OHDCF. Genotoxicity assay indicated that 2,6-dichloroaniline (AOPs by-product) had the highest toxic effect. The oxidative stress assays revealed that the highest level of ROS generation and sodA promoter induction were obtained for DCF, 4′-OHDCF and 5-OHDCF, compared to other tested compounds. We have also found that there is an interaction between chlorogenic acid and DCF, which resulted in increased toxicity of the mixture of the both compounds to E. coli K-12, comparable to parent chemicals. The strongest response of E. coli SM biosensor strain with recA:luxCDABE genetic construct in filtered treated wastewaters, comparable to control sample was noticed. It indicates, that E. coli SM recA:luxCDABE biosensor strains is a good tool for bacteria monitoring in wastewater environment. Due to toxicity and biological activity of tested DCF transformation products, there is a need to use additional wastewater treatment systems for wastewater contaminated with pharmaceutical residues.  相似文献   
78.
The degradation of pharmaceutical micropollutants is an intensifying environmental problem and synthesis of efficient photocatalysts for this purpose is one of the foremost challenges worldwide. Therefore, this study was conducted to develop novel plasmonic Ag/Ag2O/BiVO4 nanocomposite photocatalysts by simple precipitation and thermal decomposition methods, which could exhibit higher photocatalytic activity for mineralized pharmaceutical micropollutants. Among the different treatments, the best performance was observed for the Ag/Ag2O/BiVO4 nanocomposites (5 wt.%; 10 min's visible light irradiation) which exhibited 6.57 times higher photodegradation rate than the pure BiVO4. Further, the effects of different influencing factors on the photodegradation system of tetracycline hydrochloride (TC-HCl) were investigated and the feasibility for its practical application was explored through the specific light sources, water source and cycle experiments. The mechanistic study demonstrated that the photogenerated holes (h+), superoxide radicals (?O2?) and hydroxyl radicals (?OH) participated in TC-HCl removal process, which is different from the pure BiVO4 reaction system. Hence, the present work can provide a new approach for the formation of novel plasmonic photocatalysts with high photoactivity and can act as effective practical application for environmental remediation.  相似文献   
79.
Tri(2-chloroethyl) phosphate (TCEP) with the initial concentration of 5 mg/L was degraded by UV/H2O2 oxidation process. The removal rate of TCEP in the UV/H2O2 system was 89.1% with the production of Cl? and PO43? of 0.23 and 0.64 mg/L. The removal rate of total organic carbon of the reaction was 48.8% and the pH reached 3.3 after the reaction. The oxidative degradation process of TCEP in the UV/H2O2 system obeyed the first order kinetic reaction with the apparent rate constant of 0.0025 min?1 (R2=0.9788). The intermediate products were isolated and identified by gas chromatography-mass spectrometer. The addition reaction of HO? and H2O and the oxidation reaction with H2O2 were found during the degradation pathway of 5 mg/L TCEP in the UV/H2O2 system. For the first time, environment risk was estimated via the “ecological structure activity relationships” program and acute and chronic toxicity changes of intermediate products were pointed out. The luminescence inhibition rate of photobacterium was used to evaluate the acute toxicity of intermediate products. The results showed that the toxicity of the intermediate products increased with the increase of reaction time, which may be due to the production of chlorine compounds. Some measures should be introduced to the UV/H2O2 system to remove the highly toxic Cl-containing compounds, such as a nanofiltration or reverse osmosis unit.  相似文献   
80.
From 2000 to 2010 China experienced rapid economic development and urbanization. Many cities in economically developed areas have developed from a single-center status to polycentricity. In this study, we used exploratory spatial data analysis (ESDA) to identify the population centers, which identified 232 cities in China as having urban centers. COMP was used to represent urban agglomeration, and POLYD (representing how far is the city's sub-centers to the main center), POLYC (representing the number of a city's centers), and POLYP (representing the population distributed between the main center and the sub-centers) were used to indicate urban polycentricity. Night light data were used to determine the CO2 emissions from various cities in China. A mixed model was used to study the impact of urban aggregation and polycentric data on the CO2 emission efficiency in 2000 and 2010. The study found that cities with higher compactness were distributed in coastal areas, and the cities with higher multicentricity were distributed in the Yangtze River Delta and Shandong Province. The more compact the city was, the less conducive it was to improving CO2 emission efficiency. Polycentric development of the city was conducive to improving the CO2 emission efficiency, but the number of urban centers had no significant relationship with the CO2 emission efficiency. Our research showed that the compactness and multicentricity of the city had an impact on the CO2 emission efficiency and provided some planning suggestions for the low carbon development of the city.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号