首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   956篇
  免费   73篇
  国内免费   288篇
安全科学   13篇
废物处理   2篇
环保管理   445篇
综合类   492篇
基础理论   100篇
污染及防治   95篇
评价与监测   28篇
社会与环境   58篇
灾害及防治   84篇
  2023年   15篇
  2022年   27篇
  2021年   31篇
  2020年   27篇
  2019年   29篇
  2018年   43篇
  2017年   36篇
  2016年   31篇
  2015年   57篇
  2014年   50篇
  2013年   65篇
  2012年   86篇
  2011年   74篇
  2010年   50篇
  2009年   48篇
  2008年   58篇
  2007年   62篇
  2006年   80篇
  2005年   44篇
  2004年   32篇
  2003年   34篇
  2002年   32篇
  2001年   29篇
  2000年   16篇
  1999年   18篇
  1998年   15篇
  1997年   12篇
  1996年   6篇
  1995年   10篇
  1994年   12篇
  1993年   11篇
  1992年   5篇
  1991年   12篇
  1990年   11篇
  1989年   12篇
  1988年   11篇
  1987年   10篇
  1986年   8篇
  1985年   6篇
  1984年   5篇
  1983年   7篇
  1982年   17篇
  1981年   13篇
  1980年   11篇
  1979年   13篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1973年   4篇
  1972年   5篇
排序方式: 共有1317条查询结果,搜索用时 0 毫秒
91.
92.
城市化对水环境污染是一个具有普遍性和严重性的问题.城市水环境污染分为点污染和面污染两类.本文针对城市降雨径流污染(城市面源污染)作了系统分析.其内容包括城市化对降雨径流的影响,城市面污染的积累和暴雨径流的冲刷,以及推求城市暴雨径流污染负荷过程的模拟途径.  相似文献   
93.
ABSTRACT: The spatial and temporal variability of hydroclimatic elements were investigated in the central and northern Rocky Mountains (Colorado, Idaho, Montana, Utah, and Wyoming) during the 1951–1985 period. The three hydroclimatic elements studied were total water-year (October 1-September 30) streamflow (ST), winter (October 1-March 31) accumulated precipitation (PR), and April 1 snowpack (SN). An analysis of 14 virgin watersheds showed wide spatial djfferences in the temporal variability of SN, PR, and ST, and these were found to be caused largely by basin exposure to moist air flows. The more stable (low variability) basins were those exposed to prevailing northerly to westerly flow, while unstable (high variability) basins were exposed to occasional southwesterly to southeasterly moist flow. Snowpack was the better indicator of ST in 11 of the 14 watersheds, explaining 37 to 87 percent of the ST variance. Analysis of the spatial variability, based on all SN and PR data from across the study area, revealed 11 discrete climatic regions. Both SN and PR exhibited coherent regions of stable and unstable temporal variability. The average variability between stable and unstable regions differed by a factor of two, and the differences were best explained by the exposure of the mountain barrier to moist air flows.  相似文献   
94.
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976‐2012 compared to 1939‐1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (< 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface‐water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.  相似文献   
95.
Epps, Thomas H., Daniel R. Hitchcock, Anand D. Jayakaran, Drake R. Loflin, Thomas M. Williams, and Devendra M. Amatya, 2012. Characterization of Storm Flow Dynamics of Headwater Streams in the South Carolina Lower Coastal Plain. Journal of the American Water Resources Association (JAWRA) 1‐14. DOI: 10.1111/jawr.12000 Abstract: Hydrologic monitoring was conducted in two first‐order lower coastal plain watersheds in South Carolina, United States, a region with increasing growth and land use change. Storm events over a three‐year period were analyzed for direct runoff coefficients (ROC) and the total storm response (TSR) as percent rainfall. ROC calculations utilized an empirical hydrograph separation method that partitioned total streamflow into sustained base flow and direct runoff components. ROC ratios ranged from 0 to 0.32 on the Upper Debidue Creek (UDC) watershed and 0 to 0.57 on Watershed 80 (WS80); TSR results ranged from 0 to 0.93 at UDC and 0.01 to 0.74 at WS80. Variability in event runoff generation was attributed to seasonal trends in water table elevation fluctuation as regulated by evapotranspiration. Groundwater elevation breakpoints for each watershed were identified based on antecedent water table elevation, streamflow, ROCs, and TSRs. These thresholds represent the groundwater elevation above which event runoff generation increased sharply in response to rainfall. For effective coastal land use decision making, baseline watershed hydrology must be understood to serve as a benchmark for management goals, based on both seasonal and event‐based surface and groundwater interactions.  相似文献   
96.
Coastal catchments in British Columbia, Canada, experience a complex mixture of rainfall‐ and snowmelt‐driven contributions to flood events. Few operational flood‐forecast models are available in the region. Here, we integrated a number of proven technologies in a novel way to produce a super‐ensemble forecast system for the Englishman River, a flood‐prone stream on Vancouver Island. This three‐day‐ahead modeling system utilizes up to 42 numerical weather prediction model outputs from the North American Ensemble Forecast System, combined with six artificial neural network‐based streamflow models representing various slightly different system conceptualizations, all of which were trained exclusively on historical high‐flow data. As such, the system combines relatively low model development times and costs with the generation of fully probabilistic forecasts reflecting uncertainty in the simulation of both atmospheric and terrestrial hydrologic dynamics. Results from operational testing by British Columbia's flood forecasting agency during the 2013‐2014 storm season suggest that the prediction system is operationally useful and robust.  相似文献   
97.
The Storm Water Management Model was used to simulate runoff and nutrient export from a low impact development (LID) watershed and a watershed using traditional runoff controls. Predictions were compared to observed values. Uncalibrated simulations underpredicted weekly runoff volume and average peak flow rates from the multiple subcatchment LID watershed by over 80%; the single subcatchment traditional watershed had better predictions. Saturated hydraulic conductivity, Manning's n for swales, and initial soil moisture deficit were sensitive parameters. After calibration, prediction of total weekly runoff volume for the LID and traditional watersheds improved to within 12 and 5% of observed values, respectively. For the validation period, predicted total weekly runoff volumes for the LID and traditional watersheds were within 6 and 2% of observed values, respectively. Water quality simulation was less successful, Nash–Sutcliffe coefficients >0.5 for both calibration and validation periods were only achieved for prediction of total nitrogen export from the LID watershed. Simulation of a 100‐year, 24‐h storm resulted in a runoff coefficient of 0.46 for the LID watershed and 0.59 for the traditional watershed. Results suggest either calibration is needed to improve predictions for LID watersheds or expanded look‐up tables for Green–Ampt infiltration parameter values that account for compaction of urban soil and antecedent conditions are needed.  相似文献   
98.
Warner, Richard C., Carmen T. Agouridis, Page T. Vingralek, and Alex W. Fogle, 2010. Reclaimed Mineland Curve Number Response to Temporal Distribution of Rainfall. Journal of the American Water Resources Association (JAWRA) 46(4): 724-732. DOI: 10.1111/j.1752-1688.2010.00444.x Abstract: The curve number (CN) method is a common technique to estimate runoff volume, and it is widely used in coal mining operations such as those in the Appalachian region of Kentucky. However, very little CN data are available for watersheds disturbed by surface mining and then reclaimed using traditional techniques. Furthermore, as the CN method does not readily account for variations in infiltration rates due to varying rainfall distributions, the selection of a single CN value to encompass all temporal rainfall distributions could lead engineers to substantially under- or over-size water detention structures used in mining operations or other land uses such as development. Using rainfall and runoff data from a surface coal mine located in the Cumberland Plateau of eastern Kentucky, CNs were computed for conventionally reclaimed lands. The effects of temporal rainfall distributions on CNs was also examined by classifying storms as intense, steady, multi-interval intense, or multi-interval steady. Results indicate that CNs for such reclaimed lands ranged from 62 to 94 with a mean value of 85. Temporal rainfall distributions were also shown to significantly affect CN values with intense storms having significantly higher CNs than multi-interval storms. These results indicate that a period of recovery is present between rainfall bursts of a multi-interval storm that allows depressional storage and infiltration rates to rebound.  相似文献   
99.
三峡库区典型退耕还林模式土壤养分流失控制   总被引:12,自引:6,他引:6  
吴东  黄志霖  肖文发  曾立雄 《环境科学》2015,36(10):3825-3831
选择三峡库区典型退耕还林模式,包括园地(茶园)及林地(板栗)与原有坡耕地对照,观测并分析其土壤养分(氮磷)输出途径及数量情况,以评估实施退耕还林工程对流域土壤养分输出的影响.结果表明:1退耕后土壤养分氮磷年流失量(包括随泥沙和地表径流流失的量)减少;总氮(TN)年输出量从大到小依次为坡耕地(2 444.27 g·hm-2)茶园地(998.70g·hm-2)板栗林地(532.61 g·hm-2);总磷(TP)为坡耕地(1 690.48 g·hm-2)茶园地(488.06 g·hm-2)板栗林地(129.00 g·hm-2);与坡耕地比较,退耕还林模式(园地、林地)总氮、总磷年输出载荷分别减少了68.68%和81.75%.2茶园地、板栗林地与坡耕地相比,土壤养分速效态氮流失量明显减少,硝态氮(NO-3-N)输出总量依次为坡耕地(113.79g·hm-2)茶园地(73.75 g·hm-2)板栗林地(56.06 g·hm-2);铵态氮(NH+4-N)养分输出次序为茶园最大(69.34 g·hm-2),坡耕地次之(52.45 g·hm-2),板栗林地最小(47.23 g·hm-2).3硝态氮、铵态氮主要通过地表径流输出,所占总量比例分别为91.4%和92.2%;总氮和总磷主要通过泥沙输出,所占总量比例分别为86.6%和98.4%.通过退耕还林等措施,该地区地表径流以及土壤侵蚀输出明显减少,土壤养分流失得到有效控制.  相似文献   
100.
This study tested and evaluated the agricultural non-point source(AGNPS)model for the Wuchuan catchment, a typical agricultural area in the Jiulong River watershed, Fujian Province. China. The AGNPS model was calibrated and validated for the study area with observed data onten storms. Thedata on eight stormsin 2002 were used for calibration while data on two stormswere used for validation of the model. Considering the lack of water quality data over a long-term series, a novel method, comparing an internal nested catchment with its surrounding catchment, was used to supplement the less long-term series data. Dual calibration and validation of the AGNPS model was obtained by this comparison. The results indicate that the correlation coefficients were 0. 99 and 0. 98 for runoff, 0. 94 and 0. 95 forthe peak runoff rate of the large catchment and the small catchment, respectively, and 0. 76 forthe sediment of the small catchment only. Each pair of correlation coefficients is homogeneous for the same event for the two catchments. With the exception of the sediment yield and particulate phosphorus, the peak nmofr rate and other nutrients were well predicted. Sensitivity analysis showed that the Soil Conservation Service curve number and rainfall quantity were the most sensitive parameters, which resulted in high output variations. Erosivitv and other parameters had little influence on the hydrological and quality outputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号