首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   889篇
  免费   110篇
  国内免费   296篇
安全科学   22篇
废物处理   41篇
环保管理   178篇
综合类   666篇
基础理论   82篇
环境理论   3篇
污染及防治   84篇
评价与监测   60篇
社会与环境   159篇
  2024年   12篇
  2023年   60篇
  2022年   55篇
  2021年   67篇
  2020年   55篇
  2019年   46篇
  2018年   55篇
  2017年   63篇
  2016年   80篇
  2015年   86篇
  2014年   62篇
  2013年   103篇
  2012年   77篇
  2011年   115篇
  2010年   32篇
  2009年   37篇
  2008年   33篇
  2007年   30篇
  2006年   31篇
  2005年   24篇
  2004年   22篇
  2003年   21篇
  2002年   25篇
  2001年   26篇
  2000年   24篇
  1999年   12篇
  1998年   6篇
  1997年   11篇
  1996年   9篇
  1995年   7篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1977年   1篇
排序方式: 共有1295条查询结果,搜索用时 15 毫秒
101.
运用IPCC参考方法、Tapio脱钩模型、协整分析和Granger因果检验,研究了浙江碳排放特征及其驱动因素.结果表明:碳排放量呈增长趋势,碳排放强度呈下降趋势,多数年份碳排放与经济增长之间呈"弱脱钩"状态;经济增长、外贸和人口增长对碳排放正向驱动,能源效率和城市化对碳排放负向驱动;经济增长、外贸、城市化和人口增长是引起碳排放增长的单向Granger原因,能源效率与碳排放互为Granger原因.  相似文献   
102.
Based on the theory of life cycle assessment (LCA), this article analyzes the influence factors on carbon emissions from residential buildings. In the article, the life cycle of residential buildings has been divided into five stages: building materials production period, construction period, operation and maintenance period, demolition period, and solid waste recycle and disposal period. Based on this definition, the authors provide a theoretical model to calculate carbon emissions of residential building life cycle. In particular, the factor of human activities was introduced in the calculation of carbon emissions from the buildings. Furthermore, the authors put forward a model for calculation with the unit of carbon emissions for per-capita living space.  相似文献   
103.
This study examines the Granger causality relationships between economic growth, energy consumption and emissions, from 1980 to 2007 in Bahrain, controlling for capital and urban population using Toda and Yamamoto’s approach. It was found that there is unilateral causality which runs from urban population, economic growth, capital and energy consumption to environment. Further, we found strong support for causality running from economic growth to energy consumption, emissions and capital. The existence of these linkages suggests that the government of Bahrain may pursue energy efficiency strategies and carbon emissions reduction policy in the long run without impeding economic growth. Additionally, the long run pursuit of high economic growth given sustained increases in energy efficiency may also reduce CO2 emissions intensity per unit of her GDP.  相似文献   
104.
The establishment of a global multi-regional carbon market is considered to be a cost effective approach to facilitate global emission abatement and has been widely concerned.The ongoing planned linkage between the European Union’s carbon market and a new emission trading system in Australia in 2015 would be an important attempt to the practice of building up an international carbon market across different regions.To understand the abatement effect of such a global carbon market and to study its energy and economic impact on different market participants,this article adopts a global dynamic computable general equilibrium model with a detailed representation of the interactions between energy and economic systems.Our model includes 20 economic sectors and 19 regions,and describes in detail 17 energy technologies.Bundled with fossil fuel consumptions,the emission permits are considered to be essential inputs in each of the production and consumption activities in the economic system to simulate global carbon market policies.Carbon emission permits are endogenously set in the model,and can be traded between sectors and regions.Considering the current development of the global carbon market,this study takes 2020 as the study period.Four scenarios(reference scenario,independent carbon market scenario,Europe Union(EUh-Australia scenario,and China-EU-Australia scenario) are designed to evaluate the impact of the global carbon market involving China,the EU,and Australia.We find that the carbon price in the three countries varies a lot,from $32/tCO2 in Australia,to $17.5/tCO2 in the EU,and to $10/tCO2 in China.Though the relative emission reduction(3%) in China is lower than that in the EU(9%) and Australia(18%),the absolute emission reduction in China is far greater than that in the EU and Australia.When China is included in the carbon market,which already includes the EU and Australia,the prevailing global carbon price falls from $22 per ton carbon dioxide(CO2) to $12/tCO2,due to the relatively lower abatement cost in China.Seventy-one percent of the EU’s and eighty-one percent of Australia’s domestic reduction burden would be transferred to China,increasing 0.03%of the EU’s and 0.06%of Australia’s welfare.The emission constraint improves the energy efficiency of China’s industry sector by 1.4%,reduces coal consumption by3.3%,and increases clean energy by 3.5%.  相似文献   
105.
中国省际碳排放效率的空间计量   总被引:3,自引:0,他引:3  
本文基于至强有效前沿的最小距离法测算了我国1998-2011年的省际CO2排放效率,这种方法的优点是效率达到生产前沿后在投入或产出方面所做出的改动最小。然后在此基础上分析了我国省际碳排放效率的区域差异性以及空间相关性,最后运用1998-2011年我国30个省份的面板数据,建立空间面板数据模型,对我国碳排放效率的影响因素进行了实证研究。研究结果表明:样本期内,我国省际碳排放效率表现出较大的省际差异性,东部沿海省份的平均碳排放效率显著高于内陆省份。分地区看,东部地区的碳排放效率走势相对平稳,全国及中西部地区的碳排放效率则呈现出"U"型曲线的走势,并且东部地区的碳排放效率明显要高于中西部地区;空间自相关Moran’s I检验显示,省际碳排放效率在空间上存在着显著的空间自相关性,具有明显的集群趋势,而空间LISA图则表明省际碳排放效率不仅具有空间依赖性的特征,同时也有空间异质性的表现;经济规模、工业结构和能源消费结构对碳排放效率造成了较大的负面影响,对外开放、企业所有制结构以及政府干预对碳排放效率有正向影响,而产业结构对碳排放效率的影响则不显著。因此,对于将来中国提高碳排放效率工作的重点应该是实现经济增长模式由粗放型向集约型的转变,着重调整工业结构和能源消费结构,同时进一步提升对外开放的质量,加强政府的碳减排工作力度。  相似文献   
106.
通过对唐古拉山小冬克玛底冰川雪坑中非季风季节沉积的雪样分别进行酸化处理和消解处理后,利用高分辨扇形磁场等离子体质谱仪(ICP-SFMS)测试了样品中19种痕量元素(Ba、U、Sr、Rb、Tl、Mo、Cs、Pb、Sb、V、Cr、Mn、Fe、Co、Al、Cu、Ti、Li、As)的酸化浓度和总浓度.研究结果表明,痕量元素浓度的变化范围较大,元素Al的最大/最小浓度比为326(酸化浓度)和465(总浓度),元素Pb相应比值为27和48.雪冰中痕量元素的总浓度一般大于该元素的酸化浓度,其中,元素Pb、Fe、Sb、Ba、Al、Ti的酸化浓度占总浓度的平均比值分别为91%、76%、60%、52%、33%和21%.一般地,样品中不溶微粒含量越大,酸化浓度占总浓度的比值越小;不溶微粒含量越小,则相反.对痕量元素的富集系数(EF)分析表明,各元素总浓度EF均值小于酸化浓度EF均值,揭示了用酸化浓度计算EF存在对痕量元素人为来源影响的高估.人类排放是小冬克玛底冰川中痕量元素的来源之一,对于元素Mo和Sb,人类排放估计是主要来源.利用后向轨迹模型模拟出小冬克玛底冰川雪冰中痕量元素在非季风季节主要来源于青藏高原西部及中亚中东地区.  相似文献   
107.
为研究京津冀地区天然源挥发性有机化合物(BVOCs)近20a排放量及时空分布特征,本文基于卫星遥感解译获得的2000年、2005年、2010年、2015年、2020年共5期中国土地利用数据,计算获得了京津冀地区各市县BVOCs排放量及排放组成,同时对京津冀地区近20a的BVOCs排放的时空分布进行了特征分析.结果表明,近20a京津冀地区BVOCs平均排放总量为76.40万t/a,其中河北省、北京市、天津市的平均排放总量分别为59.11万t/a,15.29万t/a,2.00万t/a;按照排放组成分析,ISOP平均排放总量为16.80万t/a,占总排放量的21.99%,TMT平均排放总量为29.62万t/a,占总排放量的38.77%,OVOCs平均排放总量为29.97万t/a,占总排放量的39.23%.根据排放时间特征分析,京津冀地区冬季BVOCs排放量最低、夏季BVOCs排放量最高.BVOCs排放的空间分布与土地利用类型和植被分布密切相关,不同土地利用类型的BVOCs排放贡献具有显著差异,近20a京津冀地区林地、耕地、草地的BVOCs平均排放量分别为60.33万t/a,12.78万t/a,2.31万t/a,分别占总排放量的78.90%,16.79%,3.04%.京津冀地区BVOCs空间排放分布差异比较明显,北部、东北部的整体排放量明显高于南部、东南部.本研究可为BVOCs的计算提供研究思路,同时可为京津冀地区空气污染治理提供有关基础数据.  相似文献   
108.
基于2003~2018年285个地级市的面板数据,首先使用双重差分模型考察《全国资源型城市可持续发展规划(2013~2020年)》(以下简称《规划》)对碳排放的影响;其次,探究该政策通过资源依赖这一路径对碳排放的影响效果;进一步地,基于城市区域和城市规模两个视角分析该政策通过资源依赖影响碳排放的异质性效果;最后,探究《规划》的空间溢出效应.结果表明《规划》显著地降低了资源型城市的碳排放;机制分析表明,《规划》能够通过降低资源依赖进而减少碳排放,且产业结构升级和技术进步对《规划》的碳减排效应起到了正向调节作用;异质性分析表明,《规划》通过降低资源依赖进而促降碳排放的效果在东、中部地区以及大城市更为明显;《规划》对本地及周边地区均具有显著的碳减排效应.本研究对于在双碳目标下实现中国资源型城市的可持续发展具有重要的政策启示.  相似文献   
109.
吴一帆  许杨  唐洋博  贾宁  李玮  李翀  殷国栋 《环境科学》2023,44(3):1258-1266
研究区域CO2净排放,对“碳中和”战略的实现具有重要意义.以长江经济带为例,在揭示1999~2018年长江经济带CO2净排放时空演变特征的基础上,分析长江经济带不同区域社会发展与CO2净排放的脱钩效应,以期为差异化区域产业发展和碳减排路径提供支持.结果表明:(1)1999~2012年长江经济带CO2排放量上升了2 244.23×106 t,碳汇量在研究时间段增长了148.07×106 t;(2)长江经济带呈现“变绿”趋势,2013~2018年中高碳汇量区域(NPP>800 g·m-2,以C计)面积较1999~2012年上升了23.25%;(3)长江经济带下游经济社会发展与CO2净排放脱钩效应较强,上、中和下游强脱钩城市占长江经济带强脱钩城市的比例分别为12%、34%和54%.  相似文献   
110.
为模拟废弃物焚烧处理过程中产生的温室气体排放,积极推动温室气体减排工作,早日实现碳达峰碳中和目标.基于系统动力学和IPCC温室气体排放计算方法,构建了以基准情景(BAU)为基础,从单一和综合技术类型减排情景出发的焚烧处理温室气体排放模型,并模拟预测了2010~2050年温室气体排放量(以CO2e计,CO2e为CO2当量)的趋势变化、减排潜力以及空间分布.结果表明:①2010~2019年我国废弃物焚烧处理温室气体排放量呈增长趋势,于2016年后显著提升,年增速为18.61%.②2020~2050年,单一技术减排情景的中端改进情景(S2)和终端减排情景(S3)温室气体排放量分别于2043年和2036年达到峰值8410万t和6966万t.综合技术减排情景相较于单一技术减排情景较早达到排放峰值,综合技术减排情景中全过程减排情景(S7)采用多种减排技术协同控制温室气体排放,2050年累积排放量为205927万t,相对BAU情景减排了78.27%,排放达峰时间最早且减排潜力最大.③焚烧处理温室气体排放空间差异显著,排放量较多的省份主要分布在人口密集且经济发达的区域,江苏和广东省排放量最多,甘肃、吉林和宁夏等6个省份为排放低值区.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号