首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   14篇
  国内免费   15篇
安全科学   6篇
废物处理   9篇
环保管理   20篇
综合类   126篇
基础理论   22篇
污染及防治   21篇
评价与监测   45篇
  2024年   2篇
  2023年   9篇
  2022年   7篇
  2021年   8篇
  2020年   6篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   8篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   10篇
  2009年   3篇
  2008年   5篇
  2007年   9篇
  2006年   11篇
  2005年   5篇
  2004年   7篇
  2003年   12篇
  2002年   10篇
  2001年   19篇
  2000年   15篇
  1999年   8篇
  1998年   11篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   8篇
  1993年   13篇
  1992年   4篇
  1991年   7篇
  1990年   6篇
  1989年   5篇
  1987年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
121.
本文应用混合层上部稳定层结反射作用的商斯型烟羽模式和由文献中实测资料估算的降水清洗系数,提出了估算火电厂排放的氟化物气体地面长期平均浓度计算公式。并结合某发电厂生产实际情况进行了实例估算。  相似文献   
122.
以不同氟化物为晶面控制剂,采用超声辅助-溶胶凝胶法制备{001}和{101}晶面协同的F-TiO2,借助XRD、TEM和EDS表征其物相结构、微观形貌和元素组成,通过改变氟化物种类和添加量确定F-TiO2的最佳制备条件,并探讨其可见光催化过程中的主要活性物种及作用机理,研究关键反应参数对F-TiO2光催化活性的影响.结果表明,引入NH4F、NaF和HF可调控TiO2沿{001}、{101}晶面生长,同时F-掺杂能够增大材料的比表面积,制备所得材料的光催化性能均高于纯TiO2.但在NaBF4调控下合成的TiO2为锐钛矿/金红石/Na3TiF6三相共存的半导体耦合结构,可见光催化活性显著下降.当NH4F添加量为0.1 g时,材料显示出最强的光催化性能,可见光照射60 min后RhB的降解率为97.24%,矿化率达78.39%.降解反应符合一级反应动力学规律,速率常数为0.1321 min-1.通过自由基捕获实验和ESR测试发现,h+、·OH均以关键活性因子参与F-TiO2的可见光催化过程.F-TiO2光催化活性增强主要归因于{001}和{101}晶面的协同作用和表面异质结的形成,其能有效提高光催化反应过程中光生电子空穴对的分离和迁移效率.在可见光照射下,适当增加催化剂投加量,降低RhB初始浓度,控制溶液为中性环境,可显著提高材料的降解速率.  相似文献   
123.
安徽省饮用水中氟化物含量及健康风险分析   总被引:4,自引:1,他引:3       下载免费PDF全文
分析了安徽省不同地区231个随机样点饮用水中氟化物含量及其健康风险.结果表明,饮用水中氟化物含量为0.12~1.94mg/L,平均0.57mg/L,其中淮北平原区(0.85mg/L)>大别山地区(0.42mg/L)≈江淮丘陵区(0.41mg/L)>沿江平原区(0.34 mg/L)>皖南山区(0.24mg/L). 61.85%的饮用水中氟化物含量小于0.50mg/L,24.89%在0.50~1.0mg/L之间,12.05%在1.01~1.50mg/L之间,1.21%高于1.5mg/L.不同地区居民每人每天饮水摄氟总量为0.26~4.3mg (以2.2L饮水量计).江淮丘陵、皖西大别山、沿江平原和皖南山区饮水摄氟总量全部低于我国生活饮用水卫生标准推荐的最低限量,应采取饮茶或饮水加氟措施增加摄氟量,而在淮北平原区亳州市部分样点氟化物摄入量超过了我国生活饮用水卫生标准推荐的最高限量,宜采取降氟饮水方法减少人体摄氟量.  相似文献   
124.
植物对HF气体的敏感性是由多种因素相互作用而成的复杂综合性状,常用于定性描述大气环境质量状况。通过在密闭的培养瓶中一次性通入不同体积浓度的HF气体,以不同浓度HF胁迫下的不同类型植物为例,观察其在不同时间的外观伤害症状和细胞膜透性与HF浓度的关系。结果表明:不同植物对HF的敏感性不同;低浓度长时间和高浓度短时间的症状基本相同;植物细胞膜透性数据即电导率直接反映植物受损程度。综合植物外观症状指标与生理生化指标并赋予不同权重值,建立相对定量化的大气质量生物学指标评价模式,以定量的判断HF气体对植物的伤害,为应用植物监测和评价大气环境质量提供理论和实践依据。  相似文献   
125.
我国多地的地表水受到成土母质或背景值的影响,氟离子浓度均超过1.0 mg/L,即高于GB 3838-2002《地表水环境质量标准》Ⅲ类标准限值.为了实现地表水的快速降氟和吸附材料的便捷回收,通过水热法制备了磁性Al-MOF@Fe3O4吸附材料,使用扫描电极(SEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)和孔隙度分析仪(BET)对材料的形貌和化学组成进行了表征.结果表明:①Al-MOF@Fe3O4具有不规则的晶体形状和直径更小的介孔结构,能够提供更高的比表面积吸附氟离子.②吸附试验结果表明,Al-MOF/Fe3O4的吸附量达到了75.2 mg/g,吸附过程更加符合拟二阶动力学模型,证明了化学吸附是该除氟过程的主要机理.③增加吸附剂投加和降低氟离子初始浓度,有助于提高除氟效率,但却难以得到较高的吸附量,同时碱性条件不利于氟离子的吸附,阴离子对除氟性能的影响程度表现为CO32- > HCO3- > SO42- > PO43- > Cl-.④对吸附机理的研究表明,氟离子是通过取代Al-OH实现稳定和快速地脱离水体,使用NaOH溶液淋洗可以实现吸附剂的高效再生.⑤5次循环吸附试验后,复合材料依然保留了71.4 mg/g的吸附能力和良好的磁性.在实际地表水中进行除氟试验,该吸附剂可以将氟化物浓度从1.17 mg/L降至0.2 mg/L以下.研究显示,Al-MOF@Fe3O4纳米材料可以作为地表水除氟材料,实现对低浓度氟离子的高效去除.   相似文献   
126.
电子企业水质特征因子与雨污混接诊断研究   总被引:1,自引:0,他引:1  
针对雨水管网旱天混接排放来源中,工业企业接入雨水管网可能造成的严重水环境污染问题,以城区内存在的电子类工业企业为研究对象,开展了电子类企业混接水质特征因子识别与混接诊断研究.研究表明,在22项水质监测指标中,显著表征电子类企业废水混接的水质特征因子指标包括氟化物、氯化物、硫酸盐;其中氟化物的显著性最高,且浓度变化范围相对最低,约为(10.5±1.76) mg/L(均值±标准差).针对上海市中心城区某排水系统,以氟化物作为特征因子,结合化学质量平衡模型和随机算法对半导体废水混接进行了解析,与调查结果相比,混接水量解析误差在15%以内.进一步针对各种典型工业行业类型,建立混接水质特征因子数据库,可将水质特征因子推广应用于雨水管网混接成因识别.  相似文献   
127.
128.
陈启文  郭勇建 《化工环保》1990,10(1):27-29,37
本文叙述了黄磷废水中氟化物深度处理的工艺流程和工艺条件的选择。电解处理后的黄磷废水含有 Cl~-离子,再经石灰和聚丙烯酰胺的凝聚处理,废水中氟含量可由18—40毫克/升降至国家排放标准(10毫克/升)以下。  相似文献   
129.
孙琳婷  赵祯  唐建辉 《环境科学》2020,41(9):4069-4075
采用超高效液相色谱/质谱联用(UPLC/MS-MS)分析了我国重要的氟化物工业园区周边河流——辽宁细河(阜新段)、山东小清河(淄博段)和长江(江苏常熟段)表层沉积物中全(多)氟烷基化合物(PFASs)的污染状况.细河表层沉积物中,PFASs含量范围(以干重计,下同)为15.8~2 770 ng·g~(-1),全氟丁烷磺酸(PFBS)和六氟环氧丙烷二聚酸(HFPO-DA)是主要污染物;小清河表层沉积物中,PFASs含量为12.2~7 853 ng·g~(-1),全氟烷基辛酸(PFOA)和HFPO-DA为主要污染物;长江表层沉积物中,PFASs含量为9.20~35.9 ng·g~(-1),全氟十四酸(PFTeDA)和6∶2氟调磺酸(6∶2FTS)为主要污染物.工业园区废水排放(点源污染)是本研究中3个区域PFASs的主要来源. 3个区域PFASs含量及组成差异明显,与工业园区生产规模和产业类型有关.PFASs含量及各组分含量与TOC、沉积物粒径没有显著相关性,PFASs各组分间相关性也有差异,说明PFASs在沉积物中的富集过程与多种因素有关.  相似文献   
130.
杭州市郊菜区大气及蔬菜中氟化物的含量和分布   总被引:2,自引:0,他引:2  
本文分析调查了杭州市郊菜区大气及一些主要蔬菜中氟化物的含量及分布,并对蔬菜中氟化物含量与大气氟污染的关系进行了相关分析。结果表明,杭州市郊菜区个别蔬菜中氟化物含量已超过有关标准,这主要与工业污染源的分布有关;蔬菜中氟化物含量与大气氟浓度之间存在着明显的相关关系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号