首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2171篇
  免费   390篇
  国内免费   877篇
安全科学   214篇
废物处理   72篇
环保管理   581篇
综合类   1751篇
基础理论   305篇
污染及防治   239篇
评价与监测   152篇
社会与环境   65篇
灾害及防治   59篇
  2024年   15篇
  2023年   78篇
  2022年   111篇
  2021年   117篇
  2020年   112篇
  2019年   131篇
  2018年   102篇
  2017年   129篇
  2016年   154篇
  2015年   164篇
  2014年   180篇
  2013年   244篇
  2012年   232篇
  2011年   196篇
  2010年   143篇
  2009年   119篇
  2008年   99篇
  2007年   180篇
  2006年   130篇
  2005年   119篇
  2004年   80篇
  2003年   98篇
  2002年   64篇
  2001年   58篇
  2000年   52篇
  1999年   52篇
  1998年   40篇
  1997年   36篇
  1996年   30篇
  1995年   30篇
  1994年   26篇
  1993年   17篇
  1992年   6篇
  1991年   11篇
  1990年   5篇
  1989年   10篇
  1988年   7篇
  1987年   15篇
  1985年   5篇
  1983年   2篇
  1982年   2篇
  1981年   6篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
排序方式: 共有3438条查询结果,搜索用时 678 毫秒
921.
太阳活动对地球表面温度影响的研究进展   总被引:1,自引:0,他引:1  
论述了近年来对地球表面温度变化特征、原因研究的意义及研究进展。许多研究表明,20世纪全球地表气温的变化是自然因素和人为因素共同作用的结果。根据多种反映太阳活动的代用指标拟合的气候模型指出,太阳活动可以解释1850年以前气温变化的大部分情况。工业革命以来,温室气体成为不可忽视的影响因素,太阳活动对气候影响所占的比重及其相互作用的物理机制仍然是有待深入研究和解决的问题。  相似文献   
922.
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins.  相似文献   
923.
ABSTRACT: The Network Tracing Method (NTM) has been developed to determine gridded coarse river networks for modeling large hydrologic systems. For a coarse resolution grid, the NTM determines the downstream cell of each cell and the distance along the actual meandering flow paths between them. Unlike previously developed methods, the NTM uses fine resolution vector river networks as the source of information of the flow patterns rather than digital elevation models. The main advantage of using vector river networks as input is that they capture the hydrologic terrain features better than topographic data do, particularly in areas of low topographic relief. The NTM was applied to South America with a grid resolution of 1 degree by 1 degree and to the globe with a resolution of 2.815 degrees by 2.8125 degrees. Overall, the method captured the flow patterns well. Generated digital river networks and drainage divides showed minor disagreement with those obtained from existing maps, and most of them were consistent with the resolution of the coarse river network. The majority of estimated basin areas were also close to documented values. River lengths calculated with the NTM, however, were consistently underpredicted.  相似文献   
924.
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions.  相似文献   
925.
ABSTRACT: Models developed in Ohio to predict water quality conditions resulting from various land uses associated with the surface mining of coal are employed to ascertain their transferability to Maryland conditions. Discriminant analysis is employed to assess patterns of association between water quality and land use variables, and predictive models were then constructed with which to quantify changes in stream quality to be expected from the changing mosaic of upstream land uses in the Georges Greek basin of western Maryland. Data collected under procedures specified by the regulatory authority in Maryland may have accounted for the lack of statistically significant results from these models. Suggested changes in the collection of data are made for the coal region of Maryland.  相似文献   
926.
根据岩质边坡的稳定性主要由边坡内部的结构面所控制的特点,采用有限元重力加载比例法对含有一组平行节理面和含两组节理面的岩质边坡进行数值模拟,分析表明:与强度折减法相比,采用有限元重力加载比例法能更加快速地计算出岩质边坡的安全系数,节省计算耗时和人工干预的工作量,并能通过塑性应变的发展分析其破坏过程,确定潜在的滑动面。  相似文献   
927.
The effects of chemical oxygen demand (COD) concentration in the influent on nitrous oxide (N2O) emissions, together with the relationships between N2O and water quality parameters in free water surface constructed wetlands, were investigated with laboratoryscale systems. N2O emission and purification performance of wastewater were very strongly dependent on COD concentration in the influent, and the total N2O emission in the system with middle COD influent concentration was the least. The relationships between N2O and the chemical and physical water quality variables were studied by using principal component scores in multiple linear regression analysis to predict N2O flux. The multiple linear regression model against principal components indicated that different water parameters affected N2O flux with different COD concentrations in the influent, but nitrate nitrogen affected N2O flux in all systems.  相似文献   
928.
ABSTRACT: Many studies of ground water pollution in general and nitrate contamination in particular have often relied on a one-time investigation, tracking of individual wells, or aggregate summaries. Studies of changes in spatial distribution of contaminants over time are lacking. This paper presents a method to compare spatial distributions for possible changes over time. The large-scale spatial distribution at a given time can be considered as a surface over the area (a trend surface). The changes in spatial distribution from period to period can be revealed by the differences in the shape and/or height of surfaces. If such a surface is described by a polynomial function, changes in surfaces can be detected by testing statistically for differences in their corresponding polynomial functions. This method was applied to nitrate concentration in a population of wells in an agricultural drainage basin in Iowa, sampled in three different years. For the period of 1981–1992, the large-scale spatial distribution of nitrate concentration did not show significant change in the shape of spatial surfaces; while the magnitude of nitrate concentration in the basin, or height of the computed surfaces showed significant fluctuations. The change in magnitude of nitrate concentration is closely related to climatic variations, especially in precipitation. The lack of change in the shape of spatial surfaces means that either the influence of land use/nitrogen management was overshadowed by climatic influence, or the changes in land use/management occurred in a random fashion.  相似文献   
929.
ABSTRACT: A mathematical model is developed to optimally schedule long-term stormwater infrastructure rehabilitation activities. The model is capable of considering multiple rehabilitation projects and is driven by overall cost eensiderations. Rehabilitation activities are scheduled based on perceived reliabilities and future deterioration expected within the specified planning horizon. Future growth within the stormwater drainage basin is incorporated using chance constraints that limit the likelihood that a stormwater discharge exceeds system conveyance capacity. Model structure and development are discussed, and a hypothetical example using a drainage network is presented.  相似文献   
930.
Urbanization is the dominant form of land-use change in terms of impacts on water quality, hydrology, physical properties of watersheds and their nonpoint source (NPS) pollution po-tential at present. Urbanization has changed the source, process and sink of urban NPS pollution, especially raised the pollution load of urban runoff NPS in receiving water. Urban runoff pollution is a hot spot of research on NPS. This paper analyzed type, source and harm of the NPS pollutants of urban runoff and its influence on the receiving water. Through estimating NPS pollution load of urban runoff and summarizing the law and characteristics of urban runoff NPS systemically, study on management and control of urban runoff NPS pollution was focused on the application of BMPs (best management practices). It is a fresh methodology that management and control on NPS pollution from urban surface runoff was analyzed by methods of landscape ecology, environmental economics and environmental management. The paper provided a scientific reference for mitigating urban water environment pressure and an effective method for management and control of NPS pollution from urban surface runoff.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号