首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
  国内免费   38篇
安全科学   2篇
综合类   32篇
基础理论   24篇
污染及防治   12篇
评价与监测   2篇
  2023年   5篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   7篇
  2014年   1篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有72条查询结果,搜索用时 312 毫秒
41.
Despite the existence of industry models for estimating the crater width formed by the explosion of natural gas pipelines, their applicability is still limited since the complex formation mechanisms. In this work, a novel hybrid model was developed to predict crater width formed by explosions of natural gas pipelines, using artificial neural networks (ANN) as the fundamental predictor. Based on the historical accident records, the proposed hybrid model was trained by the pipeline parameter, the operating condition, the installation parameter, and the crater width. A novel nature-inspired optimization algorithm, i.e., the Lévy-Weighted Quantum particle swarm optimization (LWQPSO) algorithm, was proposed to optimize the ANN model's parameters. Three machine learning models were developed for comparative reasons to predict the crater width. The use of precision and error analysis indicators assesses prediction performance. The results show that the proposed hybrid model (LWQPSO-ANN) has high prediction accuracy and stability, which outperforms QPSO-ANN-based benchmark hybrid models and the model without an optimizer (Support Vector Machine, SVM). The parameter sensitivities of the proposed algorithm, including the maximum number of iterations, population size and contraction-expansion coefficient, were determined. The proposed hybrid model is expected to support the quantitative risk assessment (QRA), Right-of-Way (ROW) definition and the inherently safer design of the underground parallel pipelines.  相似文献   
42.
利用抗坏血酸(AA)对石墨相氮化碳(g-C3N4)进行改性,制备出表面含有碳量子点(CQDs)的催化剂CQDs/g-C3N4.通过X射线衍射(XRD)、紫外可见光漫反射(UV-Vis DRS)、透射电镜(TEM)、光致发光光谱(PL)、X射线光电子能谱(XPS)对催化剂进行结构、形貌、光学性能测试.发现CQDs很好的负载到了g-C3N4表面,增加了催化剂表面活性位点.UV-Vis DRS表明碳量子点能够使催化剂的吸收光谱发生红移,同时缩小了催化剂的带隙宽度,增强了对光的吸收能力.光致发光光谱则显示了碳量子点的修饰能够有效的抑制光生电子空穴对的复合,从而提高光催化性能.通过光降解实验表明0.01g CQDs/g-C3N4催化剂在80℃下,3h对罗丹明B(RhB)的降解率为57.2%.捕获剂实验则说明了超氧自由基(·O2-)在光降解体系中起到了促进反应速率的作用.  相似文献   
43.
Various computational methods were employed to investigate the zwitterion formation,a critical step for the reaction of monoethanolamine with CO_2,in five solvents(water,monoethanolamine,propylamine,methanol and chloroform) to probe the effect of hydrogen bond capacity of solvents on the reaction of amine with CO_2 occurring in the amine-based CO_2 capture process.The results indicate that the zwitterion can be formed in all considered solvents except chloroform.For two pairs of solvents(methanol and monoethanolamine,propylamine and chloroform) with similar dielectric constant but different hydrogen bond capacity,the solvents with higher hydrogen bond capacity(monoethanolamine and propylamine) facilitate the zwitterion formation.More importantly,kinetics parameters such as activation free energy for the zwitterion formation are more relevant to the hydrogen bond capacity than to dielectric constant of the considered solvents,clarifying the hydrogen bond capacity could be more important than dielectric constant in determining the kinetics of monoethanolamine with CO_2.  相似文献   
44.
The presence of toxic mercury (II) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms. Therefore, detection of mercury (II) in water is very much crucial and several researches are going on in this topic. Metal-organic frameworks (MOFs) are considered as an effective device for sensing of toxic heavy metal ions in water. The tunable functionalities with large surface area of highly semiconducting MOFs enhance its activity towards fluorescence sensing. In this study, we are reporting one highly selective and sensitive luminescent sensor for the detection of mercury (II) in water. A series of binary MOF composites were synthesized using in-situ solvothermal synthetic technique for fluorescence sensing of Hg2+ in water. The well-distributed graphitic carbon nitride quantum dots on porous zirconium-based MOF improve Hg2+ sensing activity in water owing to their great electronic and optical properties. The binary MOF composite (2) i.e., the sensor exhibited excellent limit of detection (LOD) value of 2.4 nmol/L for Hg2+. The sensor also exhibited excellent performance for mercury (II) detection in real water samples. The characterizations of the synthesized materials were done using various spectroscopic techniques and the fluorescence sensing mechanism was studied.  相似文献   
45.
In this work, a novel dual Z-scheme Bi2WO6/g-C3N4/black phosphorus quantum dots (Bi2WO6/g-C3N4/BPQDs) composites were fabricated and utilized towards photocatalytic degradation of bisphenol A (BPA) under visible-light irradiation. Optimizing the content of g-C3N4 and BPQDs in Bi2WO6/g-C3N4/BPQDs composites to a suitable mass ratio can enhance the visible-light harvesting capacity and increase the charge separation efficiency and the transfer rate of excited-state electrons and holes, resulting in much higher photocatalytic activity for BPA degradation (95.6%, at 20 mg/L in 120 min) than that of Bi2WO6 (63.7%), g-C3N4 (25.0%), BPQDs (8.5%), and Bi2WO6/g-C3N4 (79.6%), respectively. Radical trapping experiments indicated that photogenerated holes (h+) and superoxide radicals (•O2) played crucial roles in photocatalytic BPA degradation. Further, the possible degradation pathway and photocatalytic mechanism was proposed by analyzing the BPA intermediates. This work also demonstrated that the Bi2WO6/g-C3N4/BPQDs as effective photocatalysts was stable and have promising potential to remove environmental contaminants from real water samples.  相似文献   
46.
As an active metabolite of venlafaxine and emerging antidepressant, O-desmethylvenlafaxine (ODVEN) was widely detected in different water bodies, which caused potential harm to human health and environmental safety. In this study, the comparative work on the ODVEN degradation by UV (254 nm) and UV-LED (275 nm) activated sodium percarbonate (SPC) systems was systematically performed. The higher removal rate of ODVEN can be achieved under UV-LED direct photolysis (14.99%) than UV direct photolysis (4.57%) due to the higher values of photolysis coefficient at the wavelength 275 nm. Significant synergistic effects were observed in the UV/SPC (80.38%) and UV-LED/SPC (53.57%) systems and the former exhibited better performance for the elimination of ODVEN. The degradation of ODVEN all followed the pseudo-first-order kinetics well in these processes, and the pseudo-first-order rate constant (kobs) increased with increasing SPC concentration. Radicals quenching experiments demonstrated that both ·OH and CO3· were involved in the degradation of ODVEN and the second-order rate constant of ODVEN with CO3· (1.58 × 108 (mol/L)−1 sec−1) was reported for the first time based on competitive kinetic method. The introduction of HA, Cl, NO3 and HCO3 inhibited the ODVEN degradation to varying degrees in the both processes. According to quantum chemical calculation, radical addition at the ortho-position of the phenolic hydroxyl group was confirmed to be the main reaction pathways for the oxidation of ODVEN by ·OH. In addition, the oxidation of ODVEN may involve the demethylation, H-abstraction, OH-addition and C-N bond cleavage. Eventually, the UV-LED/SPC process was considered to be more cost-effective compared to the UV/SPC process, although the UV/SPC process possessed a higher removal rate of ODVEN.  相似文献   
47.
A rapid and sensitive indirect competitive fluorescence-linked immunosorbent assay (cFLISA) method based on quantum dots as the fluorescence label coupled with secondary antibody (Ab2) for the detection of chlorpyrifos in drinking water has been developed. The cFLISA method allowed for chlorpyrifos determination in a liner working range of 15.2–205.5 ng mL?1. The 50 % inhibition value (IC50) and the limit of detection (LOD) of the cFLISA were 50.2 ng mL?1 and 8.4 ng mL?1, while the IC50 and the LOD of the conventhional enzyme linked immunosorbent assay (ELISA) were 95.3 ng- mL?1 and 16.2 ng mL?1, respectively. When the concentrations of chlorpyrifos were 200, 100 and 50 ng mL?1, the recoveries ranged from 90.8 % to 108.2 % with a coefficient of variation (CV) of 7.5 %–15.2 %. In water sample analysis, the results of cFLISA were similar to those obtained from a cELISA and a high performance liquid chromatography (HPLC) method, while the detection time by cFLISA was reduced 0.5 h compared with ELISA. It showed that cFLISA could be used as a new screening method for the detection of pesticide residue.  相似文献   
48.
Dimer formation was observed during ultraviolet (UV) photolysis of the anti-inflammatory drug diclofenac, and confirmed with mass spectrometry, NMR and fluorescence analysis. The dimers were combinations of the two parent molecules or of the parent and the product of photolysis, and had visible color. Radical formation during UV exposure and dissolved oxygen photosensitized reactions played a role in dimer formation. Singlet oxygen formed via photosensitization by photolysis products of diclofenac. It reacted with diclofenac to form an epoxide which is an intermediate in some dimer formation pathways. Quantum yield of photolysis for diclofenac was 0.21 ± 0.02 and 0.19 ± 0.02 for UV irradiation from medium pressure and low pressure mercury vapor lamps, respectively. Band pass filter experiments revealed that the quantum yield is constant at wavelengths >200 nm. The same dimers formed in laboratory grade water when either of the two UV sources was used. Dimers did not form in wastewater effluent matrix, and diclofenac epoxide molecules may have formed bonds with organic matter rather than each other Implications for the importance of dimer formation in NOM are discussed.  相似文献   
49.
石墨烯作为一种新兴的二维碳纳米材料,近年来受到了医学领域科学家的高度关注。由于石墨烯类纳米材料具有较大的比表面积,易于表面修饰等优点,目前在药物载体方面的研究发展迅速。随着纳米技术的发展,除了氧化石墨烯外,进一步将还原氧化石墨烯、石墨烯量子点、石墨烯纳米带等石墨烯类纳米材料作为药物载体应用到医学领域。本文综述了石墨烯类纳米材料作为药物载体在医学领域的研究进展,并从石墨烯类纳米材料的相关毒性研究角度,提醒了人们负载药物前后石墨烯类纳米材料的迁移规律对其潜在风险研究的重要性。  相似文献   
50.
气相色谱/三重四极杆质谱用于农药多残留的快速分析   总被引:2,自引:0,他引:2  
本文建立了一种基于三重四极质谱SRM扫描的农药残留快速分析方法.使用15m的色谱柱,有效缩短了整个分析程序的时间.并通过三重四极质谱的多通道快速扫描的特点,有效解决了重叠农药峰检测的问题,在保证色谱峰强度的同时,得到了足够的数据点.整个分析过程采用一针进样,22min内可对包括有机磷农药、有机氯农药、氨基甲酸酯类农药和菊酯类农药(包括溴氰菊酯)在内的超过150种化合物同时进行准确分析.方法准确灵敏,大部分农药的检测下限可达到0.1 ppb,完全满足肯定列表及欧盟对农药残留限量的要求.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号