首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11615篇
  免费   1023篇
  国内免费   1916篇
安全科学   2580篇
废物处理   238篇
环保管理   1984篇
综合类   5434篇
基础理论   1358篇
环境理论   16篇
污染及防治   808篇
评价与监测   800篇
社会与环境   690篇
灾害及防治   646篇
  2024年   69篇
  2023年   292篇
  2022年   446篇
  2021年   517篇
  2020年   497篇
  2019年   457篇
  2018年   380篇
  2017年   496篇
  2016年   589篇
  2015年   585篇
  2014年   620篇
  2013年   833篇
  2012年   877篇
  2011年   1021篇
  2010年   626篇
  2009年   703篇
  2008年   604篇
  2007年   729篇
  2006年   626篇
  2005年   513篇
  2004年   400篇
  2003年   396篇
  2002年   326篇
  2001年   263篇
  2000年   209篇
  1999年   214篇
  1998年   145篇
  1997年   157篇
  1996年   137篇
  1995年   102篇
  1994年   112篇
  1993年   94篇
  1992年   68篇
  1991年   55篇
  1990年   44篇
  1989年   38篇
  1988年   40篇
  1987年   27篇
  1986年   17篇
  1985年   22篇
  1984年   14篇
  1983年   13篇
  1982年   25篇
  1981年   25篇
  1980年   20篇
  1979年   20篇
  1978年   14篇
  1977年   10篇
  1972年   18篇
  1971年   20篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
81.
针对深埋高地应力水平岩层掌子面开挖稳定性及支护结构失效问题,以大峡谷隧道为工程背景,通过现场测试、室内试验、数值模拟等方法,探究深埋高地应力水平岩层失稳机理及控制措施。研究结果表明:坚硬岩体被节理面切割后,在高地应力作用下容易发生挤压破碎,破碎岩体遇水发生软化,导致掌子面发生大范围塌方,初支和超前支护失效;隧道开挖后岩层发生不均匀沉降,浅部岩层最先发生弯折破坏,层内块体错动滑移,继而向上方岩层发展,并伴随层间分离和层内裂隙发育,最终形成宏观破裂面;提出的台阶法、2 m开挖进尺、砼喷层、双层小导管、提高初支强度的整体优化控制措施,可有效提高现场支护效果。  相似文献   
82.
为确定燃气管网风险评估的关键风险因素,以A省各地市燃气管网为研究对象,基于燃气专家经验确定燃气管线风险等级,提出基于Logistic回归的燃气管网风险因素重要度分析方法。采用样本增强及随机抽样的方式,选取400个均衡样本作为管网评估数据输入,通过因子分析方法对其进行降维,得到3个公共因子并作为一级指标反向构建燃气管网风险评估指标体系;利用有序多分类Logistic回归方法,根据回归系数绝对值大小对风险因素进行重要度排序。研究结果表明:外界环境对燃气管网风险的贡献程度相对较高,管道自身因素和巡检养护次之。研究结果可为城市燃气风险防控提供理论依据和方法参考。  相似文献   
83.
Natural gas pipeline construction is developing rapidly worldwide to meet the needs of international and domestic energy transportation. Meanwhile, leakage accidents occur to natural gas pipelines frequently due to mechanical failure, personal operation errors, etc., and induce huge economic property loss, environmental damages, and even casualties. However, few models have been developed to describe the evolution process of natural gas pipeline leakage accidents (NGPLA) and assess their corresponding consequences and influencing factors quantitatively. Therefore, this study aims to propose a comprehensive risk analysis model, named EDIB (ET-DEMATEL-ISM-BN) model, which can be employed to analyze the accident evolution process of NGPLA and conduct probabilistic risk assessments of NGPLA with the consideration of multiple influencing factors. In the proposed integrated model, event tree analysis (ET) is employed to analyze the evolution process of NGPLA before the influencing factors of accident evolution can be identified with the help of accident reports. Then, the combination of DEMATEL (Decision-making Trial and Evaluation Laboratory) and ISM (Interpretative Structural Modeling) is used to determine the relationship among accident evolution events of NGPLA and obtain a hierarchical network, which can be employed to support the construction of a Bayesian network (BN) model. The prior conditional probabilities of the BN model were determined based on the data analysis of 773 accident reports or expert judgment with the help of the Dempster-Shafer evidence theory. Finally, the developed BN model was used to conduct accident evolution scenario analysis and influencing factor sensitivity analysis with respect to secondary accidents (fire, vapor cloud explosion, and asphyxia or poisoning). The results show that ignition is the most critical influencing factor leading to secondary accidents. The occurrence time and occurrence location of NGPLA mainly affect the efficiency of emergency response and further influence the accident consequence. Meanwhile, the weight ranking of economic loss, environmental influence, and casualties on social influence is determined with respect to NGPLAs.  相似文献   
84.
An integrated approach for performance assessment and management of safety barriers in a systemic manner is needed concerning the prevention and mitigation of major accidents in chemical process industries. Particularly, the effects of safety barriers on system risk reduction should be assessed in a dynamic manner to support the decision-making on safety barrier establishments and improvements. A simulation approach, named Simulink-based Safety Barrier Modeling (SSBM), is proposed in this paper to conduct dynamic risk assessment of chemical facilities with the consideration of the degradation of safety barriers. The main functional features of the SSBM include i) the basic model structures of SSBM can be determined based on bow-tie diagrams, ii) multiple data (periodic proof test data, continuous condition-monitoring data, and accident precursor data) may be combined to update barrier failure probabilities and initiating event probabilities, iii) SSBM is able to handle uncertainty propagation in probabilistic risk assessment by using Monte Carlo simulations, and iv) cost-effectiveness analysis (CEA) and optimization algorithms are integrated to support the decision-making on safety barrier establishments and improvements. An illustrative case study is demonstrated to show the procedures of applying the SSBM on dynamic risk-informed safety barrier management and validate the feasibility of implementing the SSBM for cost-effective safety barrier optimization.  相似文献   
85.
Accidents in the process industry involve several interacting factors, including human and organizational factors (HOFs). A long-standing obstacle to HOFs analysis is lack of data. Accident reports are an essential data source to learn from the past and contain HOFs-related data, but they are usually unstructured text in a not standardized format. Some studies have explored the extraction of information automatically from accident reports based on Natural Language Processing (NLP) techniques. However, they were not dedicated to HOFs. Risk communication is considered an essential pillar in safety and risk science. This research develops a HOFs-focused risk communication framework based on the NLP techniques that can support risk assessment and mitigation. The proposed approach automatically extracts the target groups oriented “Who, When, Where, Why” (4Ws) information from accident reports.This framework was applied to explore the eMARS database. The results show that the “4Ws” skeleton of narratives has appreciated performance in pattern recognition and holistic information analysis. The graphical representation interfaces are designed to display the features of HOFs-related accidents, which can better be communicated to the sharp-end operators and decision-makers.  相似文献   
86.
Accidents in university laboratories not only create a great threat to students’ safety but bring significant negative social impact. This paper investigates the university laboratory safety in China using questionnaire and Bayesian network (BN) analysis. Sixteen influencing factors for building the Bayesian net were firstly identified. A questionnaire was distributed to graduate students at 60 universities in China to acquire the probability of safe/unsafe conditions for sixteen influencing factors, based on which the conditional probability of four key factors (human, equipment and material, environment, and management) was calculated using the fuzzy triangular theory and expert judgment. The determined conditional probability was used to develop a Bayesian network model for the risk analysis of university laboratory safety and identification of the main reasons behind the accidents. Questionnaire results showed that management problems are prominent due to insufficient safety education training and weak management level of management personnel. The calculated unsafe state probability was found to be 65.2%. In the BN analysis, the human factor was found to play the most important role, followed by equipment and material factor. Sensitive and inferential analysis showed that the most sensitive factors are personnel incorrect operation, illegal operation, and experiment equipment failure. Based on the analysis, countermeasures were proposed to improve the safe management and operation of university laboratories.  相似文献   
87.
Leakage and explosion of hazardous chemicals during road transportation can cause serious building damage and casualties, and adoption of highly-efficient emergency rescue measures plays a critical role in reducing accidental hazards. Considering a liquefied petroleum gas (LPG) transport tanker explosion accident that occurred in Wenling, Zhejiang Province, China on June 13, 2020 as example, this study proposes a risk assessment framework. This framework recreates the leakage and explosion of the accident process using FLACS v10.9, suggests plans for evacuation, describes the rescue areas of different levels, and explores the influence of environmental factors on the evacuation and rescue areas. The results show that simulated and predicted distributions of fuel vapour cloud concentration and explosion overpressure can provide a reference basis for rapid rescue activities; the characterization of the dynamic effects of wind speed, wind direction, and temperature with respect to the evacuation and rescue areas can be used as theoretical support for on-site adjustment of rescue forces. The role of obstacles can prevent the expansion of the evacuation areas under low wind-speed conditions, and the presence of highly congested obstacles determines the level of the rescue area. The results obtained are important for the risk analysis and the development of emergency rescue measures in case of explosion accidents associated with transportation of hazardous chemicals on high-hazard and high-sensitive road sections.  相似文献   
88.
Latex is extensively used in industrial products. However, completing some processes at scale leads to unacceptable levels of risk that need to be quantified and mitigated. Systemic risks must be eliminated wherever possible, and safety takes priority over efficiency and quality. To assess the process risks accurately, four raw materials were examined in this study: polyvinyl acetate (PVA), latex process-initiator-ammonium persulfate (APS) and hydrogen peroxide (H2O2), and vinyl acetate monomer (VAM). The physicochemical composition of the PVA latex process was determined via calorimeters, including differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2). The calorimetry results showed that the protective colloid was a critical component in the polymerisation reaction. In addition, when adding initiators to the system, it is vital to observe the normal ratio of materials and keep the stirring system operating. The scenario system also simulated the effects of shutting down various inhibitory programs, including the build-up of free radicals that could result in a runaway reaction when the initiator was added in excess. On the other hand, the result of the risk matrix displayed as a medium level, indicating that although the probability of an accident is low, the resulting severity is at disaster level. As a result, this study provides process safety engineers with a reliable frame of reference for assessing the potential dangers in the PVA latex manufacturing process.  相似文献   
89.
The safety of the solid propellant molding process is vital for the stable production of high-quality propellants. Failure events caused by abnormal parameters in the molding process may have catastrophic consequences. In this paper, a Bayesian network (BN) model is proposed to assess the safety of the solid propellant granule-casting molding process. Fault tree analysis (FTA) is developed to construct a causal link between process variables and process failures. Subsequently, expert experience and fuzzy set theory (FST) are used to obtain failure probabilities of the basic events (BEs). Based on the mapping rules, FTA provides BN with reliable prior knowledge and a network structure with interpretability. Finally, when new evidence is obtained, the probability is updated with the diagnostic reasoning capability of BN. The results of the sensitivity analysis and diagnostic inference were combined to identify key parameters in the granule-casting molding process, including curing temperature, vacuum degree, extrusion, calendering roll distance, length setting value, holding time, and polish time. The results of this paper can provide effective supporting information for managers to conduct process safety analysis.  相似文献   
90.
为定量评估生物炭对主粮作物产量的影响,收集了公开发表的116篇相关文献,共866对数据,采用Meta分析法定量分析了生物炭对我国主粮作物产量的影响及其影响因子,同时构建结构方程模型(SEM)进一步解释了因子间的交互关系.结果表明,与不施用生物炭相比,生物炭施用后可改善主粮田土壤理化性质,提高主粮作物产量,平均增产率为8.77%.其中,当生物炭pH为7~8时,平均增产率最大,可达26.49%;其C/N<60时,平均增产率为13.73%,显著高于C/N≥60的平均增产率.将生物炭施入酸性或中性土壤中,更能发挥其增产效应.当施炭量为10~20 t·hm-2时,小麦和玉米的平均增产率最大;施炭量为15~25 t·hm-2时,水稻平均增产率最大.但是,不同施炭水平的水稻增产率相近,可考虑损失部分产量,适当减施以兼顾经济效益.此外,生物炭增产效应会随施用年限增加而不断减弱,一般3 a后增产不显著.SEM表明生物炭施用量不仅直接影响主粮作物产量,还通过改善土壤肥力间接影响主粮作物产量,而生物炭C/N和pH仅通过改善土壤肥力影响主粮作物产量.因此,今后...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号