首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   3篇
  国内免费   35篇
安全科学   2篇
废物处理   7篇
环保管理   6篇
综合类   51篇
基础理论   21篇
污染及防治   19篇
评价与监测   5篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   3篇
  2013年   10篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
排序方式: 共有111条查询结果,搜索用时 125 毫秒
41.
Nondisintegrated sprayed dried cells of Scenedesmus obliquus have been applied for the study of the cumulation of metal cations. It has been found that algal cell walls behave predominantely as polyfunctional weakly acidic cation exchangers. Equilibrium constants for different exchange reactions have been determined radiometrically which allow to calculate the form of algal cell walls in various experimental conditions. Metal cations present in microconcentrations may be cumulated predominantly by another cell wall ligands in comparison with the cumulation of macroconcentrations of the same cations.  相似文献   
42.
王祖伟  吉卫星  张辉 《生态环境》2012,(6):1121-1124
以硝酸盐为例,实验分析了无机盐阳离子对碱性盐化土壤中镉形态分布的影响。结果表明,随着Na+、K+、Ca2+、Mg2+等阳离子进入土壤,土壤中镉的有效态含量增加,对镉有明显的活化作用;随着Na+、K+、Ca2+、Mg2+浓度的增加,有效态镉的含量进一步增加,镉有效态的增加幅度可达到55.46%~68.39%;土壤镉的其它各形态含量都随着Na+、K+、Ca2+、Mg2+等的加入而减少,其中碳酸盐态的减少量为23.61%~63.14%,铁锰氧化态的减少量为10.77%~25.66%,有机态的减少量为18.11%~54.68%,残渣态的减少量为2.14%~12.78%。不同种类阳离子对土壤中镉形态变化的影响程度有差异,钙离子对土壤中镉的吸附竞争能力最强,镁离子次之,而钠离子和钾离子对镉的吸附竞争能力相似。  相似文献   
43.
王东升  张婷  晁宇 《生态环境》2014,(5):870-875
土霉素是四环素类抗生素中使用较为广泛的一种,探索土霉素在土壤中的吸附解吸规律对抗生素环境风险评价与污染控制具有重要的理论与现实意义。通过改变土壤水溶液中离子强度及类型研究其对土霉素在草甸土中吸附的影响,以期为评价该种抗生素对草甸土土壤环境风险提供科学依据。土霉素测定方法选择高效液相色谱法。以V(乙腈)∶V[NaH2PO4(0.01mol·L-1)]=25∶75为流动相,在流速为1 mL·min-1,检测波长为355 nm条件下进行测定。试验以OECD Guideline 106为基础,采用批平衡法研究不同离子强度(0.01、0.03、0.05、0.08、0.10 mol·L-1CaCl2溶液)和不同阳离子(0.01 mol·L-1的NaCl、KCl、MgCl2溶液)对土霉素在草甸土中的吸附影响。结果表明:随着CaCl2浓度的增加,土霉素在草甸土中的吸附量呈降低趋势,且不同浓度的土霉素在草甸土中吸附量受离子强度的影响是不同的。土霉素浓度较低时,其在草甸土中吸附能力受离子强度影响较土霉素浓度高时小。以土壤吸附系数Kd衡量土壤吸附抗生素能力,当土壤样品中离子强度增大时,其对应Kd值呈非线性趋势减小。这说明,在某一Ca2+浓度范围内,其对吸附的影响较其他浓度范围要大。对相邻CaCl2浓度处理得出的Kd值进行t检验,在CaCl2溶液浓度在0.01与0.03 mol·L-1间得出的Kd值存在显著性差异(p≤0.05),在0.03、0.05、0.08、0.10 mol·L-1浓度间得出的Kd值均没有显著性差异(p〉0.05)。这一结果说明当CaCl2溶液浓度在0.01~0.03 mol·L-1时,其对土霉素在草甸土中的吸附影响较其他浓度范围大。以Freundlich方程对NaCl、KCl、MgCl2溶液条件下土霉素在草甸土中的吸附进行拟合,土样lg Kf值为lg Kf(Mg2+)0.05)。这说明,不同阳离子对土霉素在草甸土上的吸附量(lg Kf)影响的差异并不显著。  相似文献   
44.
The effects of thermal pretreatment on the physical and chemical properties of three typical municipal biomass wastes (MBWs), kitchen waste (KW), vegetable/fruit residue (VFR), and waste activated sludge (WAS) were investigated. The results show that thermal pretreatment at 175 °C/60 min significantly decreases viscosity, improves the MBW dewatering performance, as well as increases soluble chemical oxygen demand, soluble sugar, soluble protein, and especially organic compounds with molecular weights >10 kDa. For KW, VFR and WAS, 59.7%, 58.5% and 25.2% of the organic compounds can be separated in the liquid phase after thermal treatment. WAS achieves a 34.8% methane potential increase and a doubled methane production rate after thermal pretreatment. In contrast, KW and VFR show 7.9% and 11.7% methane decrease because of melanoidin production.  相似文献   
45.
厦门春季低空大气酸沉降垂直分布的研究   总被引:4,自引:0,他引:4  
1993年3月28日~4月7日,在厦门后坑村,对不同高度的低空(1000m以下)大气中气态污染物?云水和雨水进行了垂直分布观测?结果表明:厦门后坑村春季大气中的SO2,NOx,O3的日均值分别是0.069,0.015,0.060mg/m3,基本符合国家大气质量一级标准,而H2O2的日均值为1.70μg/m3,是地面大气中H2O2浓度的5.3倍,说明其大气氧化活性较强;空中雨水大部分酸化,而云水全部酸化,且NO-3浓度较高,说明春季酸雨污染较严重。   相似文献   
46.
We reported the study of the degradation of the azo dye cationic red X-GRL by the electro-Fenton process using an activated carbon fiber cathode. The electrogeneration of hydrogen peroxide in solution using different material cathodes fed with air was investigated, and the results revealed that the activated carbon fiber cathode was more effective compared to the graphite cathode. The decolorization and mineralization of cationic red X-GRL were also determined. The effect of the operating parameters, such as the initial Fe2+ concentration, temperature and initial dye concentration, was investigated. The optimum Fe2+ catalyst concentration values for the degradation of cationic red X-GRL was found to be 5 mM. The rate of decolorization and mineralization of dye could be accelerated by increasing the temperature. In addition, the decolorization and total organic carbon (TOC) removal efficiency decreased with the increasing initial dye concentration, while the TOC removal increased. Two different transition metal ions (Cu2+ and Mn2+) were applied as substitutes for ferrous sulfate for evaluating catalytic effect. The results indicated that Cu2+ and Mn2+ were more effective than Fe2+ in catalyzing the degradation of the dye.  相似文献   
47.
Cations in soil are essential for the growth of plants and micro-organisms. Their availability is dependent on soil organic matter. Soil organic matter (SOM) is heterogeneous comprising amino, aliphatic and phenolic acids, but particularly humic substances. All these substances can complex cations selectively. Mechanisms of complexation with dissolved organic matter are discussed. Such complexation can lead to the apparently contradictory observations that dissolved organic matter (DOM) can either increase the concentration of some less soluble nutrients, making them more available for plant uptake, or make them less available and hence less toxic. the importance of DOM is discussed in relation to soil solution, particularly the rhizosphere, and also in relation to aquatic systems. the latter systems contain mainly dissolved humic substances whereas in the soil, non-humic substances assume a greater importance.

SOM in the rhizosphere is derived from plant, microbial and animal remains but much, especially the water-soluble compounds, are acquired through root exudation. Exudation has important consequences for enhanced nutrient availability as a result of the production of non-humic substances such as amino, aliphatic and phenolic acids. in future, the role of root exudation in relation to DOM and nutrient availability should be investigated more fully, particularly as predicted elevated CO2 levels are likely to have a major impact on root exudation, nutrient availability, and possibly ecosystem community structure and functioning. It is likely that more information will become available on aquatic systems as more highly sensitive techniques and equipment capable of dealing with low concentrations of DOM in these systems become available.  相似文献   
48.
磷石膏的改性及其在水泥生产中的应用   总被引:6,自引:0,他引:6  
研究了磷石膏的改性方法及改性磷石膏在水泥生产中的应用,结果表明,通过改性,可将磷石膏中对水泥有害的杂质转化为难溶性,并能改善磷石膏中硫酸钙的溶解性能,改性磷石膏可以替代天然石膏用于水泥生产。  相似文献   
49.
To investigate the chemical characteristics of precipitation in the polluted coastal atmosphere, a total of 46 event-based precipitation samples were collected using a wet-only automatic precipitation collector from September 2006 to October 2007 at metropolitan Newark, New Jersey in the US East Coast. Samples were analyzed by ion chromatography for the concentrations of major inorganic ions (Cl, NO3, SO42−, F, NH4+, Ca2+, Mg2+, Na+, K+) and organic acid species (CH3COO, HCOO, CH2(COO)22−, C2O42−). Selected trace metals (Sb, Pb, Al, V, Fe, Cr, Co, Ni, Cu, Zn, Cd) in samples were determined by ICPMS. Mass concentration results show that SO42− was the most dominant anion accounting for 51% of the total anions, controlling the acidity of the precipitation. NH4+ accounted for 48.6% of the total cations, dominating the precipitation neutralization. CH3COO and HCOO were the two dominant water-soluble organic acid species, accounting for 42% and 40% of the total organic acids analyzed, respectively. Al, Zn and Fe were the three major trace metals in precipitation, accounting for 34%, 27%, and 25% of the total mass of metals analyzed. The pH values in precipitation ranged from 4.4 to 4.9, indicating an acidic nature. Enrichment Factor (EF) Analysis showed that Na+, Cl, Mg2+ and K+ in the precipitation were primarily of marine origin, while most of the Fe, Co and Al were from crust sources. Pb, V, Cr, Ni were moderately enriched with EFs ranging 43–410, while Zn, Sb, Cu, Cd and F were highly enriched with EFs > 700, indicating significant anthropogenic influences. Factor analysis suggests 6 major sources contributing to the observed composition of precipitation at this location: (1) nitrogen-enriched soil, (2) secondary pollution processes, (3) marine sources, (4) incinerations, (5) oil combustions, and (6) malonate–vanadium enriched sources. To further explore the source–precipitation event relationships and seasonality, cluster analysis was performed for all precipitation events. Results show that about half of the precipitation events were characterized by mixed sources. Significant influences of nitrogen-enriched soil and marine sources were associated with precipitation events in spring and autumn, while secondary pollution processes, incineration and oil combustion contributed greatly in summer.  相似文献   
50.
The total concentration of toxic elements (aluminum, cadmium, chromium and lead) and selected macro and micro elements (iron, manganese, copper and zinc) are reported in six leafy edible vegetation species, namely lettuce, spinach, cabbage, chards and green and red types of Amaranth herbs. Although spinach and chards had greater than 125 mv of iron, both the amaranthus herbs recorded > than 320 μ g g? 1 dry weight. In both the spinach and chard species, the Mn and Zn levels were appreciable recording > 225 μ g g? 1 and 150 μ g g? 1 dry weight, respectively. Aluminum concentrations were (in μ g g? 1 dry weight) lettuce (10), cabbage (11), spinach (167), chards (65), amaranthus green (293) and amaranthus red (233). All the micro and macro elements and the toxic elements (Ni, Cr, Cd and Pb) elements analyzed, were below the recommended maximum permitted levels (RMI) in vegetables. Further the elemental uptake and distribution of the nine elements, at three growth stages of the lettuce plant grown on soil bed under controlled conditions are detailed. In the soil, except for iron (16%), greater than 33% of the other cations were in exchangeable form. Generally in the lettuce plant, roots retained much of the iron (> 224 μ g g? 1) and aluminum (> 360 μ g g? 1), while leaves had less than 200 μ g g? 1 of iron and 165 μ g g? 1 of Al. Although the concentrations of elements marginally decreased with growth, the lettuce leaves had significant amounts of Mn (30 μ g g? 1), Zn (50 μ g g? 1) and Cu (3.6 μ g g? 1). Some presence of lead in leaves (2.0 μ g g? 1) was noticed, but all the toxic and other elements analyzed were well below the RMI values for the vegetables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号