首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   7篇
  国内免费   12篇
安全科学   5篇
废物处理   8篇
环保管理   16篇
综合类   43篇
基础理论   24篇
污染及防治   57篇
评价与监测   13篇
社会与环境   4篇
  2023年   1篇
  2022年   3篇
  2020年   1篇
  2019年   3篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   14篇
  2012年   9篇
  2011年   15篇
  2010年   5篇
  2009年   19篇
  2008年   16篇
  2007年   9篇
  2006年   9篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
101.
Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion-EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb-EDTA by Fe(III) is more favorable than Ni-EDTA because of differences in Ni- and Pb-adsorption to the sediments. Dissociation of Ni-EDTA becomes more favorable with decreasing Ni-EDTA concentration and decreasing pH. In contrast to Ni, Pb-EDTA can be dissociated by Zn desorbed from the aquifer sediments. Variability in adsorbed Zn concentrations has a large impact on Pb-EDTA dissociation.  相似文献   
102.
Water-soluble inorganic pollutants may constitute an environmental toxicity problem if their movement through soils and potential transfer to plants or groundwater is not arrested. The capability of biochar to immobilise and retain arsenic (As), cadmium (Cd) and zinc (Zn) from a multi-element contaminated sediment-derived soil was explored by a column leaching experiment and scanning electron microanalysis (SEM/EDX). Sorption of Cd and Zn to biochar’s surfaces assisted a 300 and 45-fold reduction in their leachate concentrations, respectively. Retention of both metals was not affected by considerable leaching of water-soluble carbon from biochar, and could not be reversed following subsequent leaching of the sorbant biochar with water at pH 5.5. Weakly water-soluble As was also retained on biochar’s surface but leachate concentrations did not duly decline. It is concluded that biochar can rapidly reduce the mobility of selected contaminants in this polluted soil system, with especially encouraging results for Cd.  相似文献   
103.
Three ex situ collections of poplar clones from natural populations of Populus alba and P. nigra growing in northern Italy were assessed for their genetic dissimilarity (GD) by means of amplified fragment length polymorphism (AFLP). The high GD evidenced within populations was exploited for screening 168 clones in a field trial on heavy metal-polluted soil. After one growth season, clonal differences in plant survival and growth were observed. On the basis of performance, six clones were singled out, and used to evaluate copper and zinc accumulation in different organs. Clonal differences in metal concentrations were most evident for leaves and stems; one clone of P. alba (AL35) had a distinctly higher concentration of both metals in the roots. Leaf polyamine (putrescine, spermidine, spermine) profiles correlated with tissue metal concentrations, depending on the clone, plant organ and metal. In particular, the high metal-accumulating clone AL35 exhibited a dramatically higher concentration of free and conjugated putrescine. Overall, the results indicate that, given the high GD of Populus even within populations, it is possible to identify genotypes best suited for soil clean-up, and useful also for investigating physiological markers associated with high metal accumulation/tolerance  相似文献   
104.
Leaching of Cu and Zn from a composite of discarded antifouling paint residues ([Cu] = 288 mg g−1; [Zn] = 96 mg g−1) into natural sea water has been studied over a period of 75 h. Total Cu and Zn were released according to a pseudo first-order reaction, with rate constants on the order of 0.3 and 2.5 (mg L−1)−1 h−1, respectively, and final concentrations equivalent to the dissolution of about 8 and 2% of respective concentrations in the composite. Time-distributions of hydrophobic metals, determined by solid phase extraction-methanol elution, were more complex. Net release of hydrophobic Cu was greater in the absence of light than under a sequence of light-dark cycles; however, hydrophobic Zn release was not detected under the former conditions but contributed up to 50% of total aqueous Zn when light was present. These observations are interpreted in terms of the relative thermodynamic and photolytic stabilities of biocidal pyrithione complexes.  相似文献   
105.
106.
Turbation is hypothesized to affect the redistribution of heavy metals in polluted floodplain soils by effects on mobility. This hypothesis was tested in microcosms by turbation of zinc-spiked sediment top layers. Manual turbation caused a fast decrease of the zinc content in the upper 15 cm of the soil, even though turbation was only applied to the upper two centimetres. It was especially zinc attached to colloid and organic matter particles that was redistributed from the top layer. Percolation processes resulted in the attached zinc being drained to depths of more than 15 cm. The decrease in zinc content of the topsoil was even stronger in combination with inundation. No indications were found for the redistribution of zinc as a result of an increase of the extractability with 0.01 M CaCl2 or changes in pH. The findings suggest that mechanical turbation and bioturbation may redistribute heavy metals from topsoils in polluted floodplains just after inundation as observed in these turbation experiments.  相似文献   
107.
Zinc is one of the most widely applied nonferrous metals in China. Study on the applications and recurrent situation of zinc resources is of great strategic importance for the sustainable development of China's economy. In this paper, a dynamic material flow analysis (MFA) method has been adopted to analyze quantificationally zinc resources in China, as well as to analyze and predict the quantity of zinc product scrap and their recycling situation. The weighted average method was applied to calculate average lifetimes of six major zinc products in China. The average lifetimes of battery, zinc oxide, zinc die-casting alloys, zinc material products, galvanized zinc and brass are 0.17, 5.3, 11.1, 12, 21 and 30 years, respectively. Assuming the lifetime of zinc product group obeys the Weibull distribution and the consumption of zinc products varies linearly with time, the future consumption and scrap generation of zinc products will increase continuously. It is expected that they would increase from 49% to 76% during 2004–2020, respectively. Assuming the recycling rate remains unchanged with time, the zinc old scrap index, both the theoretical and actual values, would continue increasing in China. The values are expected to reach 0.402 and 0.076 by 2020, respectively. Therefore, the regeneration resource of depreciated zinc is actually insufficient in China. According to the scenario analysis, the actual value of old scrap indexes is positively correlated with the recycling rate of zinc products. Because galvanized products are the largest consumption area of zinc products in China, the influence of their recycling rate on old scrap index is obviously larger than other zinc products. Through the analysis, this paper suggests that the increase of the recycling rate of zinc products could not only improve to a certain degree China's relative shortage of zinc resources, but greatly relive the supply pressure of zinc in the world.  相似文献   
108.
Natural bentonite was treated by hydrochloric, nitric, and phosphoric acids followed by washing with sodium hydroxide in order to enhance its adsorption capacity. The sample that treated with hydrochloric acid followed by further treatment with NaOH showed the highest cation exchange capacity with a value of 51.20 meq/100 g. The zero-point of charge for this sample was found to be 4.50. Adsorption isotherms for both cobalt and zinc were fitted using Langmuir, Freundlich, and Redlich-Peterson and showed an adsorption capacity of 138.1 mg Co2+ and 202.6 mg Zn2+ per gram of treated sample.  相似文献   
109.
In this study, a substance chain approach as a tool contributing to a sustainable development has been tested by applying it to zinc. An analysis of the western world zinc substance chain has been made in order to identify the main routes of zinc losses from the chain. Technologically feasible options to improve the management of the chain have been selected and applied to a modelled chain. With the emphasis on resource management, the model has been designed to evaluate the impact of options on the input of primary zinc into the chain. The consequences of the options for the energy resources have been analyzed.Redesigning the global zinc chain using the chosen technologically feasible options has lead to a lower primary zinc input when compared to the present chain, but a 45% primary zinc input is still needed, while the improved chain requires 8% less energy. To obtain a further decrease of primary zinc input in the chain, research should focus on emission abatement during zinc usage, where especially corrosion of galvanized steel forms a problem, and on the prevention of mixed-product waste streams with a low average zinc concentration. The energy analysis shows that options to improve the zinc chain should be carried out carefully, avoiding extra demands on the energy resources.The study indicates that designing a substance chain, along with even simple modelling, results in a good tool to calculate the impact of different kinds of options on the total chain.  相似文献   
110.
An acute toxicity study of three metals to Hydra species carried out using two different assessment methods, (i) determination of the LC50 and (ii) measurement of progressive morphological changes, demonstrated that relative toxicity decreased from copper to cadmium with zinc the least toxic for all species. The latter method revealed more details of the effect on Hydra in terms of physical damage to the polyp but both methods indicated that H. viridissima was more sensitive to copper and cadmium than H. vulgaris1 (Zurich strain, male clone), H. vulgaris2 (a dioecious strain reproducing sexually and asexually) and H. oligactis (dioecious, reproducing sexually and asexually). The responses to zinc were similar for all Hydra. The possible role of metabolic interactions between H. viridissima and its symbiotic green algae in contributing to the greater sensitivity of this polyp is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号