首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   7篇
  国内免费   12篇
安全科学   5篇
废物处理   8篇
环保管理   16篇
综合类   43篇
基础理论   24篇
污染及防治   57篇
评价与监测   13篇
社会与环境   4篇
  2023年   1篇
  2022年   3篇
  2020年   1篇
  2019年   3篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   14篇
  2012年   9篇
  2011年   15篇
  2010年   5篇
  2009年   19篇
  2008年   16篇
  2007年   9篇
  2006年   9篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
31.
32.
River sediment at a disused lead-zinc mine was analysed to provide an understanding of the chemical nature of the source term for contaminated sediment exported from the site. Changes in concentration and geochemical associations of Pb and Zn were measured using aqua regia digestion and the BCR sequential extraction procedure. Sediment in the immediate vicinity of the mine was highly contaminated with Pb (max. c. 11,000 mg kg−1) and Zn (max. c. 30,000 mg kg−1), but these values declined rapidly within 1 km of the mine due to dilution and hydraulic sorting. Lead fractionation changed from being predominantly in the reducible fraction to being in the acetic acid-extractable fraction, whereas Zn was predominantly in the residual fraction. This material is transported as fine sediment in the river system.  相似文献   
33.
Among the emerging literature addressing the biological effects of nanoparticles, very little information exists, particularly on aquatic organisms, that evaluates nanoparticles in comparison to non-nanocounterparts. Therefore, the potential effects of nano-scale and non-nano-scale TiO2 and ZnO on the water flea, Daphnia magna, were examined in 48-h acute toxicity tests using three different test media, several pigment formulations – including coated nanoparticles – and a variety of preparation steps. In addition, a 21-d chronic Daphnia reproduction study was performed using coated TiO2 nanoparticles. Analytical ultracentrifugation analyses provided evidence that the nanoparticles were present in a wide range of differently sized aggregates in the tested dispersions. While no pronounced effects on D. magna were observed for nano-scale and non-nano-scale TiO2 pigments in 19 of 25 acute (48-h) toxicity tests (EC50 > 100 mg L−1), six acute tests with both nano- and non-nano-scale TiO2 pigments showed slight effects (EC10, 0.5–91.2 mg L−1). For the nano-scale and non-nano-scale ZnO pigments, the acute 48-h EC50 values were close to the 1 mg L−1 level, which is within the reported range of zinc toxicity to Daphnia. In general, the toxicity in the acute tests was independent of particle size (non-nano-scale or nano-scale), coating of particles, aggregation of particles, the type of medium or the applied pre-treatment of the test dispersions. The chronic Daphnia test with coated TiO2 nanoparticles demonstrated that reproduction was a more sensitive endpoint than adult mortality. After 21 d, the NOEC for adult mortality was 30 mg L−1 and the NOEC for offspring production was 3 mg L−1. The 21-d EC10 and EC50 values for reproductive effects were 5 and 26.6 mg L−1, respectively. This study demonstrates the utility of evaluating nanoparticle effects relative to non-nano-scale counterparts and presents the first report of chronic exposure to TiO2 nanoparticles in D. magna.  相似文献   
34.
The Republic of Korea found dioxin at concentrations exceeding the Korean maximum residue limit (MRL) in pork (2 pg TEQ g−1 fat) imported from Chile in June 2008. Korea and Chile collaborated and investigated to find out the sources of contamination. An isotope dilution method and high resolution gas chromatography/mass spectrometry (HR-GC/MS) were used for the analysis of PCDD/Fs. PCDD/Fs were found from 2.17 to 36.7 pg TEQ g−1 fat from Chilean pork. 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, and 2,3,4,6,7,8-HxCDF were found as the major congeners in pork samples. 2,3,4,7,8-PeCDF showed the highest concentration and contributed about 30% among the congeners in most of the samples. 2,3,7,8-TCDD, 1,2,3,7,8,9-HxCDD, OCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF, 1,2,3,7,8,9-HxCDF, and OCDF were not detected or exist at background levels in the less contaminated samples. Remarkably high concentrations of PCDD/Fs were found in samples of zinc oxide (17 147 pg TEQ g−1), zinc oxide based premix (6673 pg TEQ g−1), and the residue crust (800 pg TEQ g−1) in a mixing chamber in the feed mill. From the results of various investigations, this case concluded that zinc oxide in the feed was the major source of the dioxin contamination in pork. The dioxins were formed from a metal refinery process to collect zinc oxide.  相似文献   
35.
This study evaluated the chemical fractionation of Cu and Zn from source to deposition in a stormwater system. Cu and Zn concentrations and chemical fractionation were determined for roadway dust, roadway runoff and pond sediments. Stormwater Cu and Zn concentrations were used to generate cumulative frequency distributions to characterize potential exposure to pond-dwelling organisms. Dissolved stormwater Zn exceeded USEPA acute and chronic water quality criteria in approximately 20% of storm samples and 20% of the storm duration sampled. Dissolved Cu exceeded the previously published chronic criterion in 75% of storm samples and duration and exceeded the acute criterion in 45% of samples and duration. The majority of sediment Cu (92-98%) occurred in the most recalcitrant phase, suggesting low bioavailability; Zn was substantially more available (39-62% recalcitrant). Most sediment concentrations for Cu and Zn exceeded published threshold effect concentrations and Zn often exceeded probable effect concentrations in surface sediments.  相似文献   
36.
Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg−1 dry soil, under a current climate and a future climate (elevated CO2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO2 assimilation rate (Asat) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of Asat in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change.  相似文献   
37.
The present work relates to galvanized structures with several years of time life subjected to atmospheric corrosion, like galvanized high tension steel pylons. The mass and fate of zinc released is evaluated both via empirical and experimental procedures. The corrosion rate determination requested atmospheric condition characterization, especially for SO 2 concentration and experimental activities focused on soil sampling around pylons. The soil zinc content, total and exchangeable, is determinates by different analytical procedures. The zinc diffusion in environment and the zinc extension under the top soil is evaluated using 1-dimensional mathematical model for miscible species in porous soil.  相似文献   
38.
Chen BC  Chen WY  Ju YR  Tsai JW  Jou LJ  Singh S  Liao CM 《Chemosphere》2011,84(5):707-715
The purpose of this study is to conduct a long-term site-specific risk assessment for zinc (Zn) susceptibility of bivalves, green mussel Perna viridis and hard clam Ruditapes philippinarum, based on published experimental data by linking the biologically-based damage assessment model with the subcellular partitioning concept. A comprehensive risk modeling framework was developed to predict susceptibility probability of two bivalve species exposed to waterborne Zn. The results indicated that P. viridis accumulates more Zn toxicity, whereas both toxic potency and the recovery rate of Zn are higher for R. philippinarum. We found that negative linear correlations exist in elimination-recovery and elimination-detoxification relationships, whereas a positive linear correlation was observed in recovery-detoxification relationships for bivalves exposed to waterborne Zn. Simulation results showed that the spatial differences of susceptibility primarily resulted from the variation of waterborne Zn concentration under field conditions. We found that R. philippinarum is more susceptible of Zn than P. viridis under the same exposure condition. Results also suggested that Zn posed no significant susceptibility risk to two bivalve species in Taiwan. We suggested that these two species can be used to biomonitor the water quality on Taiwan coastal areas.  相似文献   
39.
The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein.  相似文献   
40.
Degaffe FS  Turner A 《Chemosphere》2011,85(5):738-743
Tire wear particles (TWP) abraded from end-of-life passenger car tires have been added at a concentration of 1 g L−1 to river water, sea water and mixtures thereof in order to examine the chemical controls on the leaching of Zn from the rubber matrix. Results of time-dependent experiments conducted over a period of 5 days were consistent with a diffusion controlled leaching mechanism with rate constants of about 0.04 mg L−1 h−1/2 in river water and between about 0.02 and 0.03 mg L−1 h−1/2 in sea water. Additional experiments revealed a reduction in Zn dissolution with both increasing salinity and pH and enhancement of leaching in the presence of fluorescent light compared with dark conditions. In corresponding experiments conducted in the presence of a fixed quantity (0.8 g L−1) of clean, fractionated estuarine sediment, aqueous Zn concentrations were reduced by at least an order of magnitude. Increasing the quantity of sediment resulted in a progressive reduction in Zn concentration until an apparent equilibrium was achieved, with partition coefficients defining the sediment-water distribution of Zn of about 550 mL g−1 and 270 mL g−1 in river water and sea water, respectively. Results are interpreted in terms of the dissolution of ZnO and other residual complexes from the matrix and the subsequent, rapid adsorption of Zn2+ ions to coexistent estuarine sediment. The findings of the study are discussed in terms of their implications for the transport, fate and effects of TWP Zn in aquatic environments that are likely to receive urban runoff.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号