首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   12篇
  国内免费   65篇
安全科学   2篇
废物处理   2篇
环保管理   14篇
综合类   79篇
基础理论   37篇
污染及防治   44篇
评价与监测   11篇
  2023年   1篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2018年   6篇
  2017年   7篇
  2016年   6篇
  2015年   3篇
  2014年   10篇
  2013年   39篇
  2012年   11篇
  2011年   8篇
  2010年   5篇
  2009年   1篇
  2008年   10篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   11篇
  2003年   2篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1982年   1篇
排序方式: 共有189条查询结果,搜索用时 119 毫秒
81.
IntroductionHydrolysisisthereactionofchemicalswithwaterandalsoanimportantenvironmentalprocessoforganicpollutants.Hydrolysisofsyntheticorganiccompoundsoccursviaseveralpathwayswhichinvolvethespecific acid , baseandneutralprocesses.Inaddition ,waterdissocia…  相似文献   
82.
叙述了阿特拉津的应用概况及其在生产实践中所存在问题;阿特拉津在生物体内和环境中的降解代谢过程。综述了近年来国内外在阿特拉津的残留分析方法、环境毒理学和微生物降解等方面的研究进展。  相似文献   
83.
Lerch, R.N., E.J. Sadler, K.A. Sudduth, C. Baffaut, and N.R. Kitchen, 2010. Herbicide Transport in Goodwater Creek Experimental Watershed: I. Long‐Term Research on Atrazine. Journal of the American Water Resources Association (JAWRA) 1‐15. DOI: 10.1111/j.1752‐1688.2010.00503.x Abstract: Atrazine continues to be the herbicide of greatest concern relative to contamination of surface waters in the United States (U.S.). The objectives of this study were to analyze trends in atrazine concentration and load in Goodwater Creek Experimental Watershed (GCEW) from 1992 to 2006, and to conduct a retrospective assessment of the potential aquatic ecosystem impacts caused by atrazine contamination. Located within the Central Claypan Region of northeastern Missouri, GCEW encompasses 72.5 km2 of predominantly agricultural land uses, with an average of 21% of the watershed in corn and sorghum. Flow‐weighted runoff and weekly base‐flow grab samples were collected at the outlet to GCEW and analyzed for atrazine. Cumulative frequency diagrams and linear regression analyses generally showed no significant time trends for atrazine concentration or load. Relative annual loads varied from 0.56 to 14% of the applied atrazine, with a median of 5.9%. A cumulative vulnerability index, which takes into account the interactions between herbicide application, surface runoff events, and atrazine dissipation kinetics, explained 63% of the variation in annual atrazine loads. Based on criteria established by the U.S. Environmental Protection Agency, atrazine reached concentrations considered harmful to aquatic ecosystems in 10 of 15 years. Because of its vulnerability, atrazine registrants will be required to work with farmers in GCEW to implement practices that reduce atrazine transport.  相似文献   
84.
Abstract

Atrazine (6‐chloro‐N‐ethyl‐N'‐isopropyl‐1,3,5‐triazinedyl‐2,4‐diamine) was treated with ozone alone and in combination with hydrogen peroxide or UV radiation in three surface waters. Experiments were carried out in two bubble reactors operated continously. Variables investigated were the ozone partial pressure, temperature, pH, mass flow ratio of oxidants fed: hydrogen peroxide and ozone and the type of oxidation including UV radiation alone. Residence time for the aqueous phase was kept at 10 min. Concentrations of some intermediates, including deethylatrazine, deisopropylatrazine and deethyldeisopropylatrazine, were also followed. The nature of water, specifically the alkalinity and pH were found to be important variables that affected atrazine (ATZ) removal. Surface waters with low alkalinity and high pH allowed the highest removal of ATZ to be reached. There was an optimum hydrogen peroxide to ozone mass flow ratio that resulted in the highest ATZ removal in each surface water treated. This optimum was above the theoretical stoichiometry of the process. Therefore, to reach the maximum removal of ATZ in a O3/H2O2 process, more hydrogen peroxide was needed in the surface waters treated than in ultrapure water under similar experimental conditions. In some cases, UV radiation alone resulted in the removal of ATZ higher than ozonation alone. This was likely due to the alkalinity of the surface water. Ozonation and UV radiation processes yield different amounts of hydrogen peroxide. Combined ozonations (O3/H2O2 and O3/UV) lead to ATZ removals higher than single ozonation or UV radiation but the formation of intermediates was higher.  相似文献   
85.
Pesticides applied on sugarcane reach the subsoil of riparian forests and probably contaminate the river water. This work was conducted to learn about the phytoremediation of atrazine and subsoil contamination using the common riparian forest species of Cecropia hololeuca Miq. and Trema micranta (L.) Blum. These plants were grown in soil microcosms where 14C-atrazine at 1/10 of the field-recommended dose was applied at the bottom of the microcosm simulating the movement from contaminated ground water to the upper soil layers and into plants. Residues of 14C-atrazine were detected in all parts of the microcosm including soil, rhizosphere and the roots in different layers of the microcosm, stem and leaves. Atrazine mineralization was higher (10.2%) in the microcosms with plants than the control microcosms without plants (1.2%). The upward movement of this pesticide from deeper to more superficial soil layers occurred in all the microcosms with plants, powered by evapotranspiration process. From the atrazine applied in this study about 45% was taken up by C. hololeuca and 35% by T. micrantha. The highest amount of radioactivity (%) was found in the fine roots and the specific radioactivity (% g?1) showed that thick, fine roots and leaves bioaccumulate atrazine. The enhanced mineralization of atrazine as well the phytostabilization effect of the tree biomass will reduce the bioavailability of these residues and consequently decrease the hazardous effects on the environment.  相似文献   
86.
Abstract

Mass balance and fate of atrazine14C and pentachlorophenol‐ 14C (PCP‐ 14C) were studied in short‐term tests in a closed aerated laboratory soil‐plant system, using two concentrations in soil and two plant species, as well as under outdoor conditions for one vegetation period. In the laboratory, for both pesticides bioaccu‐mulation factors of radiocarbon taken up by the roots into plants were low. They were higher for lower (1 ppm) than for higher soil concentrations (6 ppm for atra‐zine, 4 ppm for pentachlorophenol) and varied with the plant species. Mineralization to 14CO2 in soil was negatively related to soil concentration only for PCP‐ 14C. Conversion rates in soil including the formation of soil‐bound residues were higher for the lower concentrations of both pesticides than for the higher ones; conversion rates in plants were species‐dependent. In 14 terms of CO2 formation and of conversion rates, PCP was less persistent in soil than was atrazine. For both pesticides, laboratory data on conversion and mineralization gave a rough prediction of their persistence in soil under long‐term outdoor conditions, whereas bio‐accumulation factors in plants under long‐term outdoor conditions could not be predicted by short‐term laboratory experiments.  相似文献   
87.
In-house developed ELISA was standardized to monitor atrazine residues in different environmental samples. The standard curve was linear, indicating an increase in log concentration with decrease in absorbance (%B/B0 = 1.075–0.042 Log C; r = ?0.966). The middle of the test was at 75 ng/L and the lowest detection limit at 4 ng/L. ELISA significantly correlated with the high performance liquid chromatography (HPLC) (r = 0.990). Internal validation showed good accuracy and precision. Maximum atrazine residues were present in Jehlum River water/sediments and maize/sugarcane plant roots. Most of the food samples were found to be contaminated. ELISA required less clean-up steps than HPLC, but showed matrix effect in soil/colored extracts.  相似文献   
88.
Abstract

The biodegradation of atrazine as influenced by preozonation was studied in biological GAC columns. Metabolism of isopropyl‐14C atrazine produced more 14CO2 than ring‐UL‐14C atrazine, indicating dealkylation was more rapid than ring cleavage. Preozonation increased mineralization of ring‐UL‐14C atrazine and, consequently, enhanced the performance of the GAC columns. Sixty‐two percent of the influent atrazine was converted to 14CO2 in columns that received ozonated atrazine and ozonated surface water, while 50% of the influent atrazine was converted to 14CO2 in columns that received untreated atrazine and ozonated surface water, and only 38% of the influent atrazine was converted to 14CO2 in columns with untreated influent.  相似文献   
89.
Abstract

This study was conducted to evaluate atrazine (2‐chloro‐4‐ethylamino‐6‐isopropyl‐1, 3, 5‐triazine) and alachlor (2‐chIoro‐N‐(methoxymethyl)acetamide) dissipation and movement to shallow aquifers across the Northern Sand Plains region of the United States. Sites were located at Minnesota on a Zimmerman fine sand, North Dakota on Hecla sandy loam, South Dakota on a Brandt silty clay loam, and Wisconsin on a Sparta sand. Herbicide concentrations were determined in soil samples taken to 90 cm four times during the growing season and water samples taken from the top one m of aquifer at least once every three months. Herbicides were detected to a depth of 30 cm in Sparta sand and 90 cm in all other soils. Some aquifer samples from each site contained atrazine with the highest concentration in the aquifer beneath the Sparta sand (1.28 μg L‐1). Alachlor was detected only once in the aquifer at the SD site. The time to 50% atrazine dissipation (DT50) in the top 15 cm of soil averaged about 21 d in Sparta and Zimmerman sands and more than 45 d for Brandt and Hecla soils. Atrazine DT50 was correlated positively with % clay and organic carbon (OC), and negatively with % fine sand. Alachlor DT50 ranged from 12 to 32 d for Zimmerman and Brandt soils, respectively, and was correlated negatively with % clay and OC and positively with % sand.  相似文献   
90.
羟基氧化铁催化臭氧氧化去除水中阿特拉津   总被引:2,自引:0,他引:2  
以实验室制备的羟基氧化铁(FeOOH)为催化剂,研究了其催化臭氧氧化去除水中痕量阿特拉津的效能,并对影响催化效果因素及降解机理进行了探讨。在本实验条件下,反应8 min时催化氧化阿特拉津的去除率比单独臭氧氧化高出63.2%,而FeOOH对阿特拉津的吸附量很小,结果表明,FeOOH对臭氧氧化水中的痕量阿特拉津具有明显的催化活性。探讨了催化剂投量、pH、阿特拉津初始浓度和重碳酸盐碱度对催化氧化阿特拉津的影响。催化剂最佳投量为150 mg/L,去除率随pH和阿特拉津初始浓度的增加而升高,重碳酸盐浓度为200 mg/L时催化作用受到明显抑制。通过研究叔丁醇对催化反应的影响间接推断了催化反应的机理,叔丁醇作为羟基自由基抑制剂有效地抑制了水中羟基自由基的生成和它对阿特拉津的氧化反应,间接证明这种催化作用遵循羟基自由基的反应机理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号