首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23857篇
  免费   1776篇
  国内免费   3291篇
安全科学   4404篇
废物处理   426篇
环保管理   3828篇
综合类   12699篇
基础理论   2016篇
环境理论   9篇
污染及防治   1366篇
评价与监测   1217篇
社会与环境   1621篇
灾害及防治   1338篇
  2024年   58篇
  2023年   319篇
  2022年   610篇
  2021年   832篇
  2020年   864篇
  2019年   670篇
  2018年   547篇
  2017年   803篇
  2016年   925篇
  2015年   948篇
  2014年   1070篇
  2013年   1333篇
  2012年   1691篇
  2011年   1808篇
  2010年   1294篇
  2009年   1435篇
  2008年   1032篇
  2007年   1610篇
  2006年   1606篇
  2005年   1395篇
  2004年   1218篇
  2003年   1125篇
  2002年   987篇
  2001年   793篇
  2000年   776篇
  1999年   702篇
  1998年   469篇
  1997年   405篇
  1996年   286篇
  1995年   293篇
  1994年   248篇
  1993年   199篇
  1992年   151篇
  1991年   81篇
  1990年   56篇
  1989年   32篇
  1988年   37篇
  1987年   24篇
  1986年   14篇
  1985年   14篇
  1984年   21篇
  1983年   18篇
  1982年   19篇
  1981年   10篇
  1980年   19篇
  1979年   18篇
  1977年   7篇
  1973年   8篇
  1972年   8篇
  1971年   13篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
71.
通过构建苯醌增效聚合硅酸铁多相UV-Fenton体系,讨论了体系中橙Ⅱ的脱色和降解途径.在研究苯醌浓度对聚合硅酸铁铁离子的释放、Fe2+与Fe3+之间的转化、H2O2分解和·OH生成影响的基础上,提出了苯醌对聚合硅酸铁多相UV-Fenton体系的增效机制.结果表明,随苯醌浓度的增加,其紫外光下光解还原聚合硅酸铁并释放Fe2+的程度增大、H2O2分解速度加快、产生·OH浓度峰值增高且出现的时间提前;苯醌增效体系释放于溶液中的Fe2+可以通过Fenton反应转化成Fe3+,反应结束后聚合硅酸铁能重新吸附Fe3+并使其浓度降低,避免了增效体系铁离子的二次污染.本研究将为多相催化剂催化过程的调控提供新的视角,为多相光助-芬顿反应在有机废水资源化中的应用提供理论依据和技术支持.  相似文献   
72.
利用便携式车载排放测试系统(PEMS)对2辆加装氧化催化转化器(DOC)和催化型柴油颗粒捕集器(CDPF)与否的国III重型柴油货车进行实际道路排放测试.结果表明,2辆改造重型柴油车的CO、THC、固态颗粒物粒数(SPN)和黑碳(BC)实际道路排放因子分别为(1.31±0.37)g/(kW×h)、(0.20±0.03) g/(kW×h)、(7.13×1010±5.27×1010)个/(kW×h)和(0.69±0.06)mg/(kW×h),相对于原始排放(拆除DOC+CDPF)分别降低52.48%、55.69%、99.91%和99.22%.从低速、中速到高速,CO和THC减排比例呈现上升趋势,然而运行工况对SPN和BC减排比例则无显著影响.加装DOC+CDPF会导致NO2在NOx中的占比升高,且从低速、中速到高速涨幅依次增大,但对NOx无明显减排效益,其排放因子为9.53~9.83g/(kW×h),远高于实验室排放限值.  相似文献   
73.
以白洋淀、衡水湖、于桥水库、松花湖、大伙房水库和小兴凯湖沉积作为研究对象,通过对北方六湖库沉积物中Cu、Zn、Pb、Cr、Ni等重金属元素进行分析,并与国内外其他水域重金属污染情况进行多因素比较,探讨了六湖库主要重金属污染源的差异性,区域分布特征以及与国内外其他水域污染的相似性和区别.结果表明,六湖库沉积物重金属污染处于中等偏下水平.六湖库之间主要重金属污染源存在差别.沉积物重金属含量未出现明显上升的趋势.其中Zn、Pb存在富集现象,但Pb含量与历史数据相比出现下降,Zn的含量与其他地区相比整体偏高.大伙房水库沉积物重金属污染较重,Cu、Zn、Pb、Cr、Ni含量平均值分别为56.28,142.3,17.44,97.9,44.44mg/kg.小兴凯湖沉积物重金属含量最低,Cu、Zn、Pb、Cr、Ni含量平均值分别为2.41,63.90,13.37,56.36,26.09mg/kg.六湖库综合风险评价结果为大伙房水库>于桥水库>白洋淀>衡水湖>松花湖>小兴凯湖,重金属整体潜在生态风险指数为低.  相似文献   
74.
为了解2018年春节期间京津冀地区空气污染情况,利用近地面污染物浓度数据、激光雷达组网观测数据,结合WRF气象要素、颗粒物输送通量和HYSPLIT气团轨迹综合分析污染过程.结果表明,春节期间出现3次污染过程.春节前一次污染过程,各站点PM2.5浓度均未超过200μg/m3;除夕夜,廊坊站点PM2.5峰值浓度达到504μg/m3,是清洁天气的26倍;年初二~初五,各站点PM2.5始终高于120μg/m3,且污染主要聚集在500m高度以下,北京地区存在高空传输,800m处最大输送通量达939μg/(m3·s),此次重污染过程为一次典型的区域累积和传输过程.京津冀地区处于严格管控状态时,燃放烟花爆竹期间PM2.5峰值浓度可达无燃放时PM2.5峰值的3.2倍.为防止春节期间重污染现象的发生,需对静稳天气下燃放烟花炮竹采取预防对策.  相似文献   
75.
This study profiled the bacterial community variations of water from four water treatment systems, including coagulation, sedimentation, sand filtration, ozonation-biological activated carbon filtration (O3-BAC), disinfection, and the tap water after the distribution process in eastern China. The results showed that different water treatment processes affected the bacterial community structure in different ways. The traditional treatment processes, including coagulation, sedimentation and sand filtration, reduced the total bacterial count, while they had little effect on the bacterial community structure in the treated water (before disinfection). Compared to the traditional treatment process, O3-BAC reduced the relative abundance of Sphingomonas in the finished water. In addition, ozonation may play a role in reducing the relative abundance of Mycobacterium. NaClO and ClO2 had different effects on the bacterial community in the finished water. The relative abundance of some bacteria (e.g. Flavobacterium, Phreatobacter and Porphyrobacter) increased in the finished water after ClO2 disinfection. The relative abundance of Mycobacterium and Legionella, which have been widely reported as waterborne opportunistic pathogens, increased after NaClO disinfection. In addition, some microorganisms proliferated and grew in the distribution system, which could lead to turbidity increases in the tap water. Compared to those in the finished water, the relative abundance of Sphingomonas, Hyphomicrobium, Phreatobacter, Rheinheimera, Pseudomonas and Acinetobacter increased in the tap water disinfected with NaClO, while the relative abundance of Mycobacterium increased in the tap water disinfected with ClO2. Overall, this study provided the detailed variation in the bacterial community in the drinking water system.  相似文献   
76.
Changes in water quality from source water to finished water and tap water at two conventional drinking water treatment plants(DWTPs) were monitored.Beside the routine water quality testing,Caenorhabditis elegans-based toxicity assays and the fluorescence excitation–emission matrices technique were also applied.Both DWTPs supplied drinking water that met government standards.Under current test conditions,both the investigated finished water and tap water samples exhibited stronger lethal,genotoxic and reprotoxic potential than the relative source water sample,and the tap water sample was more lethal but tended to be less genotoxic than the corresponding finished water sample.Meanwhile,the nearly complete removal of tryptophan-like substances and newly generated tyrosine-like substances were observed after the treatment of drinking water,and humic-like substances were identified in the tap water.Based on these findings,toxic pollutants,including genotoxic/reproductive toxicants,are produced in the drinking water treatment and/or distribution processes.Moreover,further studies are needed to clarify the potentially important roles of tyrosine-like and humic-like substances in mediating drinking water toxicity and to identify the potential sources of these contaminants.Additionally,tryptophan-like fluorescence may be adopted as a useful parameter to monitor the treatment performance of DWTPs.Our observations provided insights into the importance of utilizing biotoxicity assays and fluorescence spectroscopy as tools to complement the routine evaluation of drinking water.  相似文献   
77.
Photoactive aluminum doped ZnO(AlZnO) was synthesized by sol-gel method.After that,AlZnO photocatalyst was deposited on five carbon-based materials(CBMs) using ultrasonic route followed by solid-state mixing using ball mill.The CBMs used were poly aniline(PANI),carbon nitride(CN),carbon nanotubes(CNT),graphene(G),and carbon nanofibers(CNF).The crystal phases,elemental compositions,morphological,and optical properties of the AlZnO@CBMs composites were investigated.Experimental results revealed that two of AlZnO@CBMs composites exhibited superior bleaching efficiency(100% removal) and photocatalytic stability(three cycles) for 50 μmol/L Methylene Blue(MB) contaminated water after 60 min irradiation in visible light at pH 6.5,0.7% H_2O_2,and 5 g/L inorganic salts.Under optimum conditions,AlZnO@CBMs nanocomposites were employed for the treatment of mixed dyestuffs composed of MB,Methyl Orange(MO),Astrazone Blue FRR(BB 69),and Rhodamine B(RhB) dyes under dark,ultraviolet,visible,and direct sunlight.For mixed dyestuffs,the AlZnO@G achieved the highest dye sorption capacity(60.91 μmol dye stuffs/g) with kinetic rate 8.22 × 10~(-3) min~(-1) in 90 min via multi-layer physisorption(Freundlich isotherm) on graphene sheet.In additions,AlZnO@CN offered the highest photo-kinetic rate(K_(photo)) of~54.1 × 10~(-3) min~(-1)(93.8% after 60 min) under direct sunlight.Furthermore,the selective radical trapping experiment confirmed that the holes and oxidative superoxide radicals are crucial on dyes photodegradation pathway.Owing to their superior performance,AlZnO@G and AlZnO@CN nanocomposites can offer an effective in-situ solar-assisted adsorption/photocatalytic remediation of textile wastewater effluents.  相似文献   
78.
Ozone (O3), as a harmful air pollutant, has been of wide concern. Safe, efficient, and economical O3 removal methods urgently need to be developed. Catalytic decomposition is the most promising method for O3 removal, especially at room temperature or even subzero temperatures. Great efforts have been made to develop high-efficiency catalysts for O3 decomposition that can operate at low temperatures, high space velocity and high humidity. First, this review describes the general reaction mechanism of O3 decomposition on noble metal and transition metal oxide catalysts. Then, progress on the O3 decomposition performance of various catalysts in the past 30 years is summarized in detail. The main focus is the O3 decomposition performance of manganese oxides, which are divided into supported manganese oxides and non-supported manganese oxides. Methods to improve the activity, stability, and humidity resistance of manganese oxide catalysts for O3 decomposition are also summarized. The deactivation mechanisms of manganese oxides under dry and humid conditions are discussed. The O3 decomposition performance of monolithic catalysts is also summarized from the perspective of industrial applications. Finally, the future development directions and prospects of O3 catalytic decomposition technology are put forward.  相似文献   
79.
Within the drinking water distribution system (DWDS) using chloramine as disinfectant, nitrification caused by nitrifying bacteria is increasingly becoming a concern as it poses a great challenge for maintaining water quality. To investigate efficient control strategies, operational conditions including hydraulic regimes and disinfectant scenarios were controlled within a flow cell experimental facility. Two test phases were conducted to investigate the effects on the extent of nitrification of three flow rates (Q = 2, 6, and 10 L/min) and four disinfection scenarios (total Cl2=1 mg/L, Cl2/NH3-N=3:1; total Cl2=1 mg/L, Cl2/NH3-N=5:1; total Cl2=5 mg/L, Cl2/NH3-N=3:1; and total Cl2=5 mg/L, Cl2/NH3-N=5:1). Physico-chemical parameters and nitrification indicators were monitored during the tests. The characteristics of biofilm extracellular polymetric substance (EPS) were evaluated after the experiment. The main results from the study indicate that nitrification is affected by hydraulic conditions and the process tends to be severe when the fluid flow transforms from laminar to turbulent (2300<Re<4000). Increasing disinfectant concentration and optimizing Cl2/NH3-N mass ratio were found to inhibit nitrification to some extend when the system was running at turbulent condition (Q = 10 L/min, Re = 5535). EPS extracted from biofilm that was established at the flow rate of 6 L/min had greater carbohydrate/protein ratio. Furthermore, several nitrification indicators were evaluated for their prediction efficiency and the results suggest that the change of nitrite, together with total organic carbon (TOC) and turbidity can indicate nitrification potential efficiently.  相似文献   
80.
The distribution and sources of organochlorine pesticides (OCPs) in air and surface waters were monitored in Nairobi City using triolein-filled semipermeable membrane devices (SPMDs). The SPMDs were extracted by dialysis using n-hexane, followed by cleanup by adsorption chromatography on silica gel cartridges. Sample analysis was done by GC-ECD and confirmed by GC–MS. Separation of means was achieved by analysis of variance, followed by pair-wise comparison using the t-test (p≤ 0.05). The total OCPs ranged between 0.018 – 1.277 ng/m3 in the air and <LOD – 1391.000 ng/m3 in surface waters. Based on the results, the means of Industrial Area, Dandora and Kibera were not significantly different (p≤ 0.05), but were higher (p≤ 0.05) than those of City square and Ngong’ Forest. The results revealed non-significant (p≤ 0.05) contribution of long-range transport to OCP pollution in Nairobi City. This indicated possible presence of point sources of environmental OCPs in the city. The water-air fugacity ratios indicated that volatilization and deposition played an important role in the spatial distribution of OCPs in Nairobi City. This indicated that contaminated surface waters could be major sources of human exposure to OCPs, through volatilization. The incremental lifetime cancer risks (ILCR) determined from inhalation of atmospheric OCPs were 2.3745  ×  10?13 – 1.6845  ×  10?11 (adult) and 5.5404  ×  10?13 – 3.9306  ×  10?11 (child) in the order: Dandora > Kibera > Industrial Area > City Square > Ngong’ Forest. However, these were lower than the USEPA acceptable risks, 10?6 – 10?4. This study concluded that atmospheric OCPs did not pose significant cancer risks to the residents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号