首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   21篇
  国内免费   54篇
安全科学   10篇
环保管理   21篇
综合类   129篇
基础理论   56篇
污染及防治   20篇
评价与监测   3篇
社会与环境   17篇
灾害及防治   5篇
  2024年   1篇
  2023年   13篇
  2022年   14篇
  2021年   24篇
  2020年   13篇
  2019年   16篇
  2018年   12篇
  2017年   19篇
  2016年   12篇
  2015年   8篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   13篇
  2010年   17篇
  2009年   11篇
  2008年   8篇
  2007年   5篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   9篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有261条查询结果,搜索用时 93 毫秒
51.
松花江干流PAHs的底泥-水交换行为及时空异质性   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解松花江干流底泥和水体中PAHs(多环芳烃)的环境分布行为,应用逸度方法研究了松花江中PAHs的底泥-水交换行为及时空异质性特征. 结果表明:KOW(辛醇-水分配系数)影响PAHs的底泥-水交换行为,并与底泥-水交换的ff(逸度分数)呈显著负相关(R=-0.801,P=0.000),而ff与PAHs的溶解度则呈正相关(R=0.499,P<0.05);高环PAHs的底泥-水交换行为受w(OC)变化的影响较为强烈,w(OC)每提高0.10%,2~6环PAHs的ff降低0.7%~11.0%;春季PAHs的底泥-水交换的ff大于夏季. 低环的Nap(萘)表现出明显的由底泥向水体的迁移行为,Phe(菲)和FlA(荧蒽)几乎接近于平衡状态,而高环的BaP(苯并芘)和BgP(苯并苝)则相反. 夏季PAHs的大气传输及本地排放源的沉降,可能为松花江干流PAHs的主要来源;汇入支流的输入可视为主干河流水体中污染物的另一来源. 水体中2~4环PAHs处于中等变异,5~6环PAHs则表现为强变异;底泥中3~4环PAHs处于中等变异,而其他环数PAHs则呈强变异. 从季节性变化来看,夏季底泥中PAHs的CV(变异系数)相对较大,而春季水体中PAHs的CV则略大于夏季. 研究显示,PAHs物理化学性质的差异,水体中悬浮颗粒物和底泥中w(OC),以及外源性PAHs的输入,均会使不同环数PAHs在水体和底泥中的CV产生较大差异.   相似文献   
52.
基于流体分离污泥的异质性:微生物活性和群落结构   总被引:2,自引:1,他引:1  
生物流化床处理系统中的剩余污泥如果能够被识别为老化的污泥和高活性的污泥,并通过某一种物理方法加以原位分离,则有可能提高生物处理的效率.本文以构造流体力场实现基于比重分布不同污泥组分的分离,得到聚结型污泥与离散型污泥,考察了两种污泥在胞外聚合物、微生物活性和微生物群落结构方面的差异,并与降解活性相关联,以证明异质性的存在.研究发现:活性污泥这种异质性的存在归因于离散型污泥中的胞外聚合物含量高,亲水性更强,比重更小;聚结型污泥在基质利用效率、比耗氧速率方面优于离散型污泥;在废水生物处理系统的污泥中,聚结型污泥较离散型污泥具有微生物群落结构分布上的优势,种群丰度更高.研究结果证明了聚结型污泥和离散型污泥内部菌胶团存在着功能上的差异,前者是应该被保留的活性组分,后者应该作为剩余污泥加以分离排出.  相似文献   
53.
We examine how demographic context influences the trust that boundary spanners experience in their dyadic relationships with clients. Because of the salience of age as a demographic characteristic as well as the increasing prevalence of age diversity and intergenerational conflict in the workplace, we focus on team age diversity as a demographic social context that affects trust between boundary spanners and their clients. Using social categorization theory and theories of social capital, we develop and test our contextual argument that a boundary spanner's experience of being trusted is influenced by the social categorization processes that occur in dyadic interactions with a specific client and, simultaneously, by similar social categorization processes that influence the degree to which the client team as a whole serves as a cooperative resource for demographically similar versus dissimilar boundary spanner–client dyads. Using a sample of 168 senior boundary spanners from the consulting industry, we find that generational diversity among client team members from a client organization undermines the perception of being trusted within homogeneous boundary spanner–client dyads while it enhances the perception of being trusted within heterogeneous dyads. The perception of being trusted is an important aspect of cross‐boundary relationships because it influences coordination and the costs associated with coordination. © 2015 The Author Journal of Organizational Behavior Published by John Wiley & Sons Ltd  相似文献   
54.
Introduction: It is widely agreed that highway work zones pose significant threats to road users because driving conditions in work zones are quite different from the normal ones, particularly when traffic volumes approach a highway capacity. Therefore, work zone safety is a critical aspect for state agencies and traffic engineers. Method: In the current study, a total of 10,218 crashes that occurred in highway work zones in the state of Washington for the period between 2007 and 2013 were used. Time of day is disaggregated into four subgroups: (1) Morning from 6:00 to 11:00 a.m. (2) Midday from 12:00 to 5:00 p.m. (3) Night from 6:00 to 11:00 p.m., and (4) Late night from 12:00 to 5:00 a.m. Then, four mixed logit models were estimated to account and correct for heterogeneity in the crash data by considering three injury severity levels: severe injury, minor injury, and no injury. Results: The estimation results reveal that most contributing factors are uniquely significant in a specific time of day period, whereas three factors affect injury severity regardless of time of day such as the indicators of not deployed airbag, one passenger vehicle involved in the crash, and rear-end collision. Further, some factors were found to affect injury severity into two or three time periods, such as female drivers that found to decrease the probability of no injury in morning and night time periods, while increasing severe injury outcome in midday time. Conclusions: The effect of time of day on injury severity of work-zone related crashes should be modeled separately rather than using a holistic model. Practical applications: As a starting point, findings of the current study can be used by transportation officials to reduce fatalities and injuries of work zone crashes by identifying factors that uniquely contribute to each time of day period.  相似文献   
55.
鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究   总被引:1,自引:0,他引:1  
频繁干湿交替增强了鄱阳湖洲滩土壤水对湿地系统的动态调节作用。以鄱阳湖吴城国家自然保护区的一个典型洲滩湿地为研究区,调查分析了土壤质地沿高程梯度的分布特征,确定了不同土壤质地的水分特征参数,并阐述了土壤质地与其水分特征参数的空间异质性。结果发现:该洲滩湿地主要分布砂土、粉壤土和粘土三种类型。水平断面方向上,粒径较粗的砂土和粉壤土主要分布在高位滩地,而粒径相对较细的粘土主要分布在近湖区开阔水面的低位滩地;土壤剖面方向上,土壤质地呈现出固有分层特性。van Genuchten模型应用于鄱阳湖洲滩湿地土壤水分特征曲线拟合,证实了该模型在鄱阳湖洲滩湿地的适用性。模型结果表明土壤残余含水率θr变化约9%~19%,饱和含水率θs变化约42%~57%,土壤进气值的倒数α约0.01 cm~(–1),水分特征曲线形状参数n介于1.11~4.65之间。土壤含水率变化对van Genuchten模型中参数α和n较为敏感,而对θr和θs的敏感性相对较弱。研究成果可为后续该区域以及全湖区湿地生态水文模型的构建和发展提供背景信息和参数资料。  相似文献   
56.
The metabolite 2,6-dichlorobenzamide (BAM) is a frequent groundwater pollutant produced during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenile). Spatial variability of BAM mineralisation is uncharacterized in surface soil, however, and factors controlling the heterogeneity remain unknown. We addressed these issues by sample-to-sample comparisons of BAM mineralisation rates and a range of soil characteristics at spatial scales ranging from meters to centimetres. For mineralisation assays nano-molar concentrations of labelled BAM were added to determine mineralisation rates under realistic conditions. We found a significant variability of BAM mineralisation which increased with decreasing spatial scale. BAM mineralisation rates were correlated to the density of BAM-degrading bacteria but not to water content, TOC, NH4+, NO3, or pH. The genus Aminobacter, which contains the only BAM degraders known, was detected in MPN samples of BAM degraders by a specific PCR assay targeting the 16S rRNA gene, confirming a role of Aminobacter in BAM mineralisation.  相似文献   
57.
The effect of heterogeneous environments upon the dynamics of invasion and the eradication or control of invasive species is poorly understood, although it is a major challenge for biodiversity conservation. Here, we first investigate how the probability and time for invasion are affected by spatial heterogeneity. Then, we study the effect of control program strategies (e.g. species specificity, spatial scale of action, detection and eradication efficiency) on the success and time of eradication. We find that heterogeneity increases both the invasion probability and the time to invasion. Heterogeneity also reduces the probability of eradication but does not change the time taken for successful eradication. We confirm that early detection of invasive species reduces the time until eradication, but we also demonstrate that this is true only if the local control action is sufficiently efficient. The criterion of removal efficiency is even more important for an eradication program than simply ensuring control effort when the invasive species is not abundant.  相似文献   
58.
Lignitic mine soils represent a typical two-scale dual-porosity medium consisting of a technogenic mixture of overburden sediments that include lignitic components as dust and as porous fragments embedded within a mostly coarse-textured matrix. Flow and transport processes in such soils are not sufficiently understood to predict the course of soil reclamation or of mine drainage. The objective of this contribution is to identify the most appropriate conceptual model for describing small-scale heterogeneity effects on flow on the basis of the physical structure of the system. Multistep flow experiments on soil cores are analyzed using either mobile–immobile or mobile–mobile type 1D dual-porosity models, and a 3D numerical model that considers a local-scale distribution of fragments. Simulations are compared with time series' of upward infiltration and matric potential heads measured at two depths using miniature tensiometers. The 3D and the 1D dual-permeability models yielded comparable results as long as pressure heads are in local equilibrium; however, could describe either the upward infiltration or the matric potential curves but not both at the same time. The mobile–immobile type dual-porosity model failed to describe the data. A simultaneous match with pressure heads and upward infiltration data could only be obtained with the 1D dual-permeability model (i.e., mobile–mobile) by assuming an additional restriction of the inter-domain water transfer. These results indicate that for unsaturated flow conditions at higher matric potential heads (i.e., here >− 40 hPa), water in a restricted part of the fragment domain must be more mobile as compared to water in the sandy matrix domain. Closer inspections of the pore system and first neutron radiographic imaging support the hypothesis that a more continuous pore region exists at these pressure heads in the vicinity of the lignitic fragments possibly formed by fragment contacts and a lignitic dust interface-region between the two domains. The results suggest that the small-scale structure is too complex as to be represented by weighted contributions of individual components alone.  相似文献   
59.
Solutes spread out in time and space as they move downwards from the soil surface with infiltrating water. Solute monitoring in the field is often limited to observations of resident concentrations, while flux concentrations govern the movement of solutes in soils. A recently developed multi-compartment sampler is capable of measuring fluxes at a high spatial resolution with minimal disturbance of the local pressure head field. The objective of this paper is to use this sampler to quantify the spatial and temporal variation of solute leaching below the root zone in an agricultural field under natural rainfall in winter and spring. We placed two samplers at 31 and 25 cm depth in an agricultural field, leaving the soil above undisturbed. Each sampler contained 100 separate cells of 31 × 31 mm. Water fluxes were measured every 5 min for each cell. We monitored leaching of a chloride pulse under natural rainfall by frequently extracting the collected leachate while leaving the samplers buried in situ. This experiment was followed by a dye tracer experiment. This setting yielded information that widely surpassed the information that can be provided by separate anionic and dye tracer trials, and solute transport monitoring by coring or suction cups. The detailed information provided by the samplers showed that percolation at the sampling depth started much faster (approximately 3 h after the start of rainfall) in initially wet soil (pressure head above − 65 cm) than in drier soil (more than 14 h at pressure heads below − 80 cm). At any time, 25% of the drainage passed through 5–6% of the sampled area, reflecting the effect of heterogeneity on the flow paths. The amount of solute carried by individual cells varied over four orders of magnitude. The lateral concentration differences were limited though. This suggests a convective–dispersive regime despite the short vertical travel distance. On the other hand, the dilution index indicates a slight tendency towards stochastic–convective transport at this depth. There was no evidence in the observed drainage patterns and dye stained profiles of significant disturbance of the flow field by the samplers.  相似文献   
60.
The aim of the study was to determine centimeter-scale spatial variation in mineralization potential in diffusely polluted soil. To this end we employed a 96-well microplate method to measure the mineralization of 14C-labeled organic compounds in deep-well microplates and thereby compile mineralization curves for 348 soil samples of 0.2-cm3. Centimeter-scale spatial variation in organic matter and the mineralization of glucose, benzoic acid, and PAHs (phenanthrene and pyrene) was determined for urban road-side soil sampled as arrays (7 × 11 cm) of 96 subsamples. The spatial variation in mineralization was visualized by means of 2-D contour maps and quantified by means of semivariograms. The geostatistical analysis showed that the easily degradable compounds (glucose and benzoic acid) exhibited little spatial variation in mineralization potential, whereas the mineralization was highly heterogeneous for the PAH compounds that require specialized degraders. The spatial heterogeneity should be taken into account when estimating natural attenuation rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号