首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   682篇
  免费   73篇
  国内免费   205篇
安全科学   70篇
废物处理   39篇
环保管理   40篇
综合类   374篇
基础理论   89篇
污染及防治   158篇
评价与监测   162篇
社会与环境   9篇
灾害及防治   19篇
  2024年   9篇
  2023年   16篇
  2022年   27篇
  2021年   28篇
  2020年   34篇
  2019年   30篇
  2018年   26篇
  2017年   34篇
  2016年   38篇
  2015年   42篇
  2014年   40篇
  2013年   86篇
  2012年   58篇
  2011年   50篇
  2010年   34篇
  2009年   33篇
  2008年   25篇
  2007年   42篇
  2006年   48篇
  2005年   31篇
  2004年   42篇
  2003年   32篇
  2002年   30篇
  2001年   27篇
  2000年   25篇
  1999年   16篇
  1998年   10篇
  1997年   21篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有960条查询结果,搜索用时 15 毫秒
51.
固定源可凝结颗粒物稀释采样器的设计   总被引:1,自引:0,他引:1  
固定污染源烟气排放进入大气环境后稀释降温,气相中部分饱和蒸气压较低的组分转化为可凝结颗粒物,这部分颗粒物在固定源烟气颗粒物监测中通常被忽略.为评价固定源可凝结颗粒物的排放情况,本文设计开发并评测了一套稀释采样器.稀释采样器稀释比在10∶1~40∶1范围内,混合停留时间为5~10 s.实验室评测结果表明,稀释气颗粒物背景值低((~0.1±0.08)个·cm-3),稀释采样器气密性良好,烟气和稀释气能够均匀混合,颗粒物损失较少,细颗粒物(PM2.5)损失在5%以下.本稀释采样器能模拟烟气与环境空气混合降温过程,可用于固定源可凝结颗粒物的测量.  相似文献   
52.
利用粉煤灰制备高纯超细氧化铝粉体的研究   总被引:15,自引:0,他引:15  
利用粉煤灰为原料制备高纯超细氧化铝粉体。给出了采用硅酸二钙晶相转变自粉化、高效分散剂———碳化法从粉煤灰中制备氧化铝方法的工艺路线 ,确定了从粉煤灰制备高纯超细氧化铝粉体的最佳工艺条件 ,为粉煤灰的高价值利用开辟了一条新途径  相似文献   
53.
论述了混沌现象与基本特征,提出把混沌分析方法引入环境科学中,探索环境现象变化的新途径。重点简述混沌现象在环境影响的变迁的实例,环境混沌系统控制的基本思路和混沌分析相空间预测方法。  相似文献   
54.
有机磷酸酯(organophosphate esters, OPEs)在环境中普遍存在,对生态系统和人体健康构成潜在的风险.在优化固相萃取(SPE)前处理方法的基上,建立了超高效液相色谱-质谱联用(UPLC-MS/MS)测定水体中8种OPEs的检测方法.实验对比了不同SPE小柱、不同洗脱液和不同洗脱液体积对8种目标化合物的回收率.结果发现,使用ENVI-18柱富集OPEs,用8 mL含25%(体积分数)二氯甲烷的乙腈洗脱,目标化合物加标回收率在92.5%~102.2%.不同基质样品加标回收率为88.5%~116.1%,RSD为1.7%~9.9%.对北京某污水处理厂不同工艺和污水受纳河流水体上下游连续6 d取样检测,污水厂出水中OPEs的浓度范围为85.9~235.4 ng·L-1,受纳河流下游的6 d OPEs平均浓度为130.3 ng·L-1,高于上游来水中浓度(119.4 ng·L-1),但低于污水处理厂出水平均总浓度(162.5 ng·L-1).结果表明,污水处理厂不能完全去除OPEs,对磷酸...  相似文献   
55.
杨静 《中国环境监测》2021,37(1):156-164
为测定污染土壤中的6种低残留喹诺酮类抗生素(氧氟沙星、培氟沙星、恩诺沙星、环丙沙星、诺氟沙星、恶喹酸),全面优化了一种联合加速溶剂萃取(ASE)、固相萃取(SPE)和高效液相色谱/三重四级杆质谱(HPLC/MSMS) 3种检测技术的分析方法。样品采用甲醇和0.1 mol/L EDTA-McIlvaine缓冲液(1∶1)进行加速溶剂萃取,经Bond Elut Plexa型HLB固相萃取小柱富集纯化,土壤中6种喹诺酮类抗生素的基质效应因子控制在0.84~1.04。在0.2~100.0μg/L(以恶喹酸计)质量浓度范围内,目标化合物的线性关系良好(r>0.999),6种目标化合物的检出限为0.09~0.75μg/kg,加标回收率为60.9%~89.9%。该方法自动化程度和准确度较高,可极大程度地降低基质效应,提高测定方法的灵敏度,适用于土壤中喹诺酮类抗生素残留的检测。  相似文献   
56.
固相萃取富集快速测定水样中痕量铜离子   总被引:1,自引:0,他引:1  
采用固相萃取(SPE)富集水样中痕量铜离子继以分光光度法测定的方法,对样品浓度、SPE柱流速等诸多影响SPE柱效率的因素进行了研究,建立了一种简便、快速测定水样中痕量铜离子的新方法。结果表明,样品浓度低时,经过SPE柱时流速低,SPE柱富集效率高。当铜离子浓度为0-20μg/L时,铜离子富集倍数可达2000倍,回收率大于90%,相对标准偏差为6.5%,方法检测限可达0.5μg/L。  相似文献   
57.
Background Phytoextraction of contaminated soils by heavy metals can provide a great promise of commercial development. Although there are more than 400 species of hyperaccumulators found in the world, phytoremediation technology is rarely applied in field practice for remedying contaminated soils, partially due to low biomass and long growth duration for most of discovered hyperaccumulating plants. In order to enhance the metal-removing efficiency in a year, the two-phase planting countermeasure of phytoextraction by harvesting anthesis biomass was investigated on the basis of the newly found Cd-hyperaccumulator Rorippa globosa (Turcz.) Thell. with 107.0 and 150.1 mg/kg of the Cd accumulation in stems and leaves, respectively, when soil Cd added was concentrated to 25.0 mg/kg. Methods The field pot-culture experiment was used to observe the distribution property of R. globosa aboveground biomass and to examine characteristics of accumulating Cd by the plant at different growth stages. The concentration of Cd in plants and soils was determined using atomic absorption spectrophotometry (AAS). Results and Discussion The results indicated that the total dry stem and leaf biomass of R. globosa harvested at the flowering phase was up to 92.3% of that at its full maturity and the concentration of Cd in stems and leaves harvested at the flowering phase was up to 73.8% and 87.7% of that at the mature phase, respectively. The Cd-removing ratio by shoots of R. globosa harvested at the flowering phase was up to 71.4% of that at the mature phase. It was also found, by observing the growth duration of R. globosa, that the frostless period at the experiment site was twice as long as the growth time from the seedling-transplanted phase to the flowering phase of the hyperaccumulator. Conclusion R. globosa could be transplanted into contaminated soils twice in one year by harvesting the hyperaccumulator at its flowering phase based on climatic conditions of the site and traits of the plant growth. In this sense, the extraction efficiency of Cd in shoots of R. globosa increased 42.8% compared to that of at its single maturity when the plant was transplanted into contaminated soils after it had been harvested at its flowering phase and the plant accumulated Cd from soil at the same extraction ratio at its second flowering phase. Thus, the method of anthesis biomass regulation by the two-phase planting is very significant to increase the Cd-removing efficiency by phytoremediation used in practice over the course of a year. Recommendation and Outlook As for some hyperaccumulators that the growth duration from the seedling-transplanted phase to the flowering phase are short and the concentrations of heavy metals accumulated in their shoots at the flowering phase are high, the efficiency of phytoremediation can greatly be improved using the method of the two-phase planting.  相似文献   
58.
1 IntroductionGaschromatography(GC)isoneofthemostpopularseparationmethodsfortheanalysisofvolatilecompounds,andawidevarietyofpolymericmaterialsasthestationaryphases,havebeendeveloped .Incontrasttothesuccessfulapplicationsandsubsequentcommercializationofth…  相似文献   
59.
Mixtures of dense non-aqueous phase liquids (DNAPLs) trapped in the subsurface can act as long-term sources of contamination by dissolving into flowing groundwater. In general, the components of higher solubility are removed more quickly, thus altering the composition of the remaining DNAPL, and possibly leading to changes in its physical properties. Through the development of a simple compositional model, Roy et al. [J. Contam. Hydrol. 2002 (59) 163] showed that preferential dissolution of a mixed DNAPL could potentially result in changes in density and interfacial tension that could subsequently lead to remobilization of an initially static DNAPL pool. The laboratory experiments presented in this next paper provide a proof-of-concept for the previously presented theory, demonstrating and quantifying this process of remobilization. In addition, the experiments provide a data set for evaluation of the model presented by Roy et al. [J. Contam. Hydrol. 2002 (59) 163]. In the four experiments, a DNAPL pool comprised of tetrachloroethene and benzene was created as an open pool overlying glass beads within a water-saturated 2-D flow box. Experiments included rectangular and triangular pools. In each of the experiments, remobilization (as breakthrough) was observed more than 2 weeks after formation of the initial pool. During each experiment, the pool height declined as mass was lost by dissolution, while sampling indicated a decrease in the mole fraction of benzene, the more soluble component. Small protuberances formed along the bottom of the pool as its composition changed with time and the displacement pressure was achieved for various pore throats. Eventually one of the protuberances extended further, forming a finger (breakthrough). In general, the pool emptied as the finger proceeded further into the beads. It was also shown theoretically and experimentally that remobilization will occur sooner for pools with a triangular (pointing down), rather than rectangular, shape. The experimental results were simulated using the model developed by Roy et al. [J. Contam. Hydrol. 2002 (59) 163]. The model matched the observations well, suggesting that it accurately represents the primary mechanisms involved with natural remobilization under the conditions of the study.  相似文献   
60.
To investigate formation mechanisms of secondary organic carbon(SOC) in Eastern China,measurements were conducted in an urban site in Shanghai in the summer of 2015. A period of high O_3 concentrations(daily peak 120 ppb) was observed, during which daily maximum SOC concentrations exceeding 9.0 μg/(C·m~3). Diurnal variations of SOC concentration and SOC/organic carbon(OC) ratio exhibited both daytime and nighttime peaks. The SOC concentrations correlated well with O_x(= O_3+ NO_2) and relative humidity in the daytime and nighttime, respectively, suggesting that secondary organic aerosol formation in Shanghai is driven by both photochemical production and aqueous phase reactions. Single particle mass spectrometry was used to examine the formation pathways of SOC. Along with the daytime increase of SOC, the number fraction of elemental carbon(EC) particles coated with OC quickly increased from 38.1% to 61.9% in the size range of 250–2000 nm, which was likely due to gas-to-particle partitioning of photochemically generated semi-volatile organic compounds onto EC particles. In the nighttime, particles rich in OC components were highly hygroscopic, and number fraction of these particles correlated well with relative humidity and SOC/OC nocturnal peaks. Meanwhile, as an aqueous-phase SOC tracer, particles that contained oxalate-Fe(III) complex also peaked at night. These observations suggested that aqueous-phase processes had an important contribution to the SOC nighttime formation. The influence of aerosol acidity on SOC formation was studied by both bulk and single particle level measurements, suggesting that the aqueous-phase formation of SOC was enhanced by particle acidity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号