首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   11篇
  国内免费   17篇
安全科学   9篇
废物处理   2篇
环保管理   5篇
综合类   31篇
基础理论   8篇
污染及防治   12篇
灾害及防治   1篇
  2022年   2篇
  2020年   4篇
  2019年   2篇
  2017年   6篇
  2016年   5篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   7篇
  2011年   2篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2003年   5篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
21.
硅藻土基多孔吸附填料的制备及其对Pb2+的吸附   总被引:3,自引:0,他引:3       下载免费PDF全文
以硅藻土为主要原料,添加超细碳粉、烧结助剂和粘结剂,按一定比例混合、搅拌、造粒,在设定程序下煅烧,制备了硅藻土基多孔吸附填料(DBPAF),探讨了烧成温度、造孔剂添加量、硅藻土粉体粒径对DBPAF孔隙特征的影响,运用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对DBPAF的微观形貌和物相组成进行了观察和分析,采用动态吸附实验研究了DBPAF的可操作性,采用静态吸附实验研究了DBPAF吸附Pb2+的性能和机制.结果表明,最适烧成温度范围为900~1000℃,最适造孔剂添加量为7.0%,最适硅藻土粉体粒径为2.40μm;与硅藻土原土(粉体)相比,DBPAF的可操作性明显提高,孔隙结构得到了明显改善,物相组成以方石英相为主.研究还表明,烧制过程升温速率以2~5℃/min为宜以保证DBPAF气孔分布均匀;DBPAF对Pb2+吸附容量较硅藻土原土(粉体)提高了78.0%,吸附过程速率控制步骤为Pb2+与DBPAF孔道内的基团发生的化学反应,吸附动力学符合拟二级动力学模型.  相似文献   
22.
生活垃圾焚烧飞灰的加速碳酸化处理   总被引:1,自引:0,他引:1       下载免费PDF全文
王雷  金宜英  聂永丰 《中国环境科学》2009,29(10):1111-1116
针对垃圾焚烧飞灰中钙及两性重金属含量高的特点,在高液固比(10:1)条件下对焚烧飞灰进行加速碳酸化处理以改善飞灰的理化特性.采用XRD、SEM、压汞分析以及硫酸硝酸毒性浸出方法,对加速碳酸化处理后飞灰的晶相、形貌、孔隙特征及重金属(Pb、Cu、Zn、Cd、Ni、Cr)浸出特性进行了研究.结果表明,加速碳酸化处理后飞灰中的CaClOH峰消失,而CaCO3的峰增加,且强度增加.加速碳酸化处理可以有效降低焚烧飞灰的pH值, Pb、Cu、Zn和Ni的浸出分别减少了99.7%、93.9%、90.6%和27.8%,而Cr的浸出浓度增加了29.7%.  相似文献   
23.
选择福州市中心城区3种典型的行道树结构作为研究对象,以CO为交通污染物的示踪气体,分别对绿化带两侧,即道路中央和人行道上CO浓度的时空变化进行了测定,分析了道路中央CO浓度与人行道上CO浓度的差值ΔC。研究结果表明:不同结构的行道树对交通污染物扩散有显著影响。主干道低覆盖度结构,最有利于交通污染物扩散;主干道高覆盖度结构和支路结构,则不利于交通污染物的扩散,使大量污染物涌入人行道,对行人健康构成危害。交通污染物的扩散效果取决于树冠结构,通过对各道路树冠结构的研究发现,疏透度与覆盖度均较小时,扩散效果最好;疏透度较大、覆盖度也较大时,扩散效果最差。  相似文献   
24.
为了解决顶板裂隙漏风诱发的顶煤甚至采空区遗煤自燃问题,基于州景煤矿再生顶板现场实况,应用FLAC3D软件对比研究有无灌注纳米浆泡材料处理的再生顶板应力、位移以及孔隙率变化.结果表明:在不采取任何控制措施的情况下,巷道顶板位移大,极有可能会发生顶板垮塌事故且应力在两帮集中,两帮位移大,巷道断面收缩率极大;若使用纳米浆泡材...  相似文献   
25.
用扫描电镜表面观察和全自动压汞仪测定了2种亲水化改性PVDF微滤膜的平均孔径、孔隙率等基本性能参数。对2种膜的纯水通量,及其平板膜组件在好氧膜生物反应器内污染过程进行分析。结果显示,2种膜污染过程均呈现先缓慢后快速的"二阶段"趋势,第二阶段是膜污染的主导阶段。尽管平均孔径小、孔隙率高的膜本身阻力大、纯水通量低,但其污染速率较低,物理及化学清洗恢复率较高。膜孔径及孔隙率指标是影响其在MBR中运行的污染速率的主要因素,平均孔径小、孔隙率高的膜抗污染能力强。  相似文献   
26.
The effect of a biofilm on solute diffusion in fractured porous media   总被引:1,自引:0,他引:1  
At sites in fractured rock where contamination has been exposed to the rock matrix for extended periods of time, the amount of contaminant mass residing in the matrix can be considerable. Even though it may be possible to diminish concentrations by the advection of clean water through the fracture features, back diffusion from mass held in the matrix will lead to a continuing source of contamination. In such an event, the development of a biofilm (a thin film of microbial mass) on the wall of the fractures may act to limit or prevent the back diffusion process. The objective of this preliminary study is to explore the influence imparted by the presence of a biofilm on the process of matrix diffusion. The investigation was conducted using radial diffusion cells constructed from rock core in which biofilm growth was stimulated in a central reservoir. Once biofilms were developed, forward diffusion experiments were conducted in which a conservative solute migrated from the central reservoir into the intact rock sample. Diffusion experiments were performed in a total of 11 diffusion cell pairs where biofilm growth was stimulated in one member of the pair and inhibited in the other. The effect of the presence of a biofilm on tracer diffusion was determined by comparison of the diffusion curves produced by each cell pair. A semi-analytical model that accounts for the presence of a biofilm was used to investigate the effect of the biofilm on mass transfer due to changes in the effective porosity, effective diffusion coefficient, and the depth of penetration of the biofilm into the intact rock. The results show that the biofilm acted to plug the rock matrix, rather than forming a discrete layer on the reservoir surface. The reduction in effective porosity due to the biofilm ranged from 6% to 52% with the majority of the samples in the 30% to 50% range. Based on the present results, with more efficient biofilm stimulation, it is reasonable to assume that a more complete plugging of the microcrack porosity might be possible, leaving a much thicker and efficient barrier than could be achieved via a surface biofilm.  相似文献   
27.
目的对Ni-P合金表面层孔隙进行定量表征。方法通过SEM微观形貌图像分析孔隙分布,运用ImageJ软件对SEM图像进行处理,并统计分析Ni-P合金表面层孔隙的孔隙率、孔隙数目、等效直径等数据。结果电化学蚀刻在改性Ni-P合金表面层制备微孔层,随时间延长,表面微孔数量增多、孔径增大。蚀刻1,3,5 min的孔隙率分别为0.85%,4.34%,11.18%,蚀刻5 min后微孔发生交联,Ni-P合金层防护性能被破坏。结论电化学蚀刻3 min可在Ni-P合金表面层获得分布均匀、等效直径主要分布在100~850 nm之间的微孔。  相似文献   
28.
Sewage sludge with the additive corn cob was used as prescusor to prepare sludge-based carbon adsorbents by pyrolysis method. And then, the carbonizated products were activated with potassium hydroxide. The mixing ratio of the corn cob to sewage sludge was investigated. The surface area and pore size distribution, elemental composition, surface chemistry structure and the surface physical morphology were determined and compared. The results demonstrated that the addition of corn cob into the sewage sludge sample could effectively improve the surface area (from 287 to 591 m 2 /g) and the microporosity (from 5% to 48%) of the carbon based adsorbent, thus enhancing the adsorption behavior. The sulfur dioxide adsorption capacity was measured according to breakthrough test. It was found that the sulfur dioxide adsorption capacity of the adsorbents was obviously enhanced after the addition of the corn cob. It is presumed that not only highly porous adsorbents, but also a high metallic content of these materials are required to achieve good performances.  相似文献   
29.
A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based coagulants, such as charge, size, fractal dimension and compressibility, have an effect on the cake layer structure. At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation, at the point of charge neutralization for near zero zeta potential, the aggregate particles produced possess the greatest size and highest fractal dimension, which contributes to the cake layer being most loose with high porosity and low compressibility. Thus the membrane filterability is better. At a low or high iron dose of FC and PFS, a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility. Therefore the membrane fouling is accelerated and MF permeability becomes worse. The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are, the lower the porosity and the tighter the cake layer conformation. This also explains the MF membrane flux variation visually and accurately.  相似文献   
30.
Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号