首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
  国内免费   2篇
环保管理   2篇
综合类   2篇
基础理论   2篇
污染及防治   25篇
评价与监测   1篇
社会与环境   1篇
  2023年   1篇
  2017年   1篇
  2016年   1篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2001年   2篇
  1999年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
The cyclic siloxane decamethylcyclopentasiloxane (D5) is a high production volume chemical which has recently been assessed under the Canadian Chemicals Management Plan (CMP). Cyclic volatile methyl siloxanes (cVMS) are one of the challenge substances in the CMP batches. To provide toxicity and growth information on a species of relevance to the Canadian environment, we assessed D5 in a fathead minnow (Pimephales promelas) embryo to young adult assay. The test was 65 d in length, and exposed fathead minnow eggs to juveniles until near maturity (60 d post-hatch). The D5 concentrations in flow-through fish exposure aquaria were about one-third of nominal D5 concentrations. Fathead minnows were exposed to 0.25, 0.82, 1.7, 3.6, and 8.7 μg L−1 D5. During the exposure of fathead minnows to D5 there were few effects seen. Egg hatching and larval fish survival and growth were normal. Juvenile fish survival and growth were good in all environmentally-relevant concentrations of D5, and were similar to control fish. The two highest D5 concentrations (8.7 μg L−1 and 3.6 μg L−1, mean measured D5) increased the condition factors of fathead minnows compared to water control and DMSO control fish. Although there were few effects of D5 in our fathead minnow study, the compound was taken up and stored in fish bodies over the 65-d exposure. The bioconcentration factor for D5 in fathead minnows was 4450, for the lowest environmentally-relevant D5 exposure water concentrations, and 4920 for all D5 exposure concentrations tested.  相似文献   
12.
The mushroom Macrocybe gigantea collected from the native stands in the Yunnan Province of China can be considered a species that efficiently bioconcentrates mercury (Hg) because the values of the bioconcentration factor (BCF) calculated for this element were well above unity, i.e., for caps, the BCF ranged from 4.8 to 24 and, for stipes, from 3.6 to 18. The Hg content of the composite samples of caps of the fruit bodies collected in the wild ranged from 0.48 to 1.78 mg kg?1 dry matter and of stipes from 0.36 to 1.70 mg kg?1 dry matter, whereas 0.37 and 0.25 mg kg?1 dry matter were observed for farmed specimens. M. gigantea, because of a large biomass of the fruit bodies that emerge in a cluster, is an important food item in Yunnan, but knowledge on mineral composition and content of this species is largely absent. This study estimated the lifetime average daily dose intake of Hg through mushroom as well as the incremental lifetime cancer risk and non-cancer health hazard to consumers of this mushroom.  相似文献   
13.
Abstract

Bioaccumulation kinetics and bioconcentration factor (BCF) of chlorinated pesticides like Aldrin, Dieldrin, Benzene hexachloride (BHC), and Dichloro-diphenyl-dichloro-ethane (DDT) in fish tissues of Puntius ticto was studied in detail in a continuous fed system. The bioconcentration process is summarized by using a first order uptake model and the steady-state BCF is calculated based on the 30 days exposure. Rate of bioaccumulation of DDT was maximum of 4.6432 µg g?1 wet weight per day in liver tissue whereas it was minimum of 0.0002 µg g?1 wet weight per day in case of Dieldrin in the muscle tissue among the pesticides. It was observed that DDT showed maximum BCF of 89,010 in case of liver tissue of the fish exposed to 30 days. The regression coefficient (r 2) between pesticide concentration and exposure time varied between 0.6212 and 0.9817 indicating high correlation. Based on actual calculated BCF values, the octanol–water partition coefficient (K ow) values were predicted. In order to prove the hydrophobic property of chlorinated compounds and its affinity towards lipid, the K ow is predicted. Results showed that pesticide burden differ from tissue to tissue and can be correlated to the lipid content, size, exposure time, and species.  相似文献   
14.
ABSTRACT: Aquatic organisms passively accumulate hydrophobic organic compounds, such as polychlorinated biphenyls, even when ambient water concentrations of the contaminant are below analytical detection limits. However, contaminant concentrations in tissue samples are subject to an inherently high level of variability due to differences in species, life stage, and gender bioconcentration potentials. Semipermeable membrane devices (SPMDs) were used to sample Aroclor 1254, a mixture of readily bioconcentrated polychlorinated biphenyls (PCBs), in a contaminated wetland near Flat Top, WV. The devices consisted of triolein, a lipid found in fish, enclosed in a polyethylene membrane. SPMDs were deployed in the water column and in direct contact with wetland sediments along a previously identified concentration gradient of PCBs. The devices were retrieved after a 25-day exposure period. Analytes were recovered by dialyzing the devices in nanograde hexane. Hexane dialysates were condensed and analyzed by gas chromatography. All deployed devices sequestered quantifiable amounts of Aroclor 1254. Water-column SPMDs accumulated PCBs far in excess of ambient water concentrations. The devices contacting sediments accumulated PCBs at all sites, though accumulated concentrations did not exceed concentrations in sediment. Patterns of PCB concentration in the devices corresponded to the identified gradient at the site. Results from the water-column SPMDs were used to estimate the concentration of the dissolved, bioavailable fraction of PCBs present in the water column. These concentrations ranged from 0.01 to 0.09 μg/L of bioavailable Aroclor 1254.  相似文献   
15.
Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect.  相似文献   
16.
Yakata N  Sudo Y  Tadokoro H 《Chemosphere》2006,64(11):1885-1891
Seven compounds with different lipophilicities and structures—1,3,5-trichlorobenzene, pentachlorobenzene, acenaphthylene, 1,4-dimethyl-2-(1-methylphenyl)benzene, 4-ethylbiphenyl, 4,4′-dibromobiphenyl, and 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane—were subjected to bioconcentration tests in carp at concentrations below the water solubilities of the compounds in the presence or absence of a dispersant (either an organic solvent or a surfactant). The bioconcentration factors (BCFs) of the compounds were on the order of 102–104. The BCF values remained in the range of 15–49% for all the compounds, whether or not a dispersant was present, i.e., the BCF values in the presence of an organic solvent or a surfactant at a concentration below the critical micelle concentration were not significantly smaller than the BCF values in the absence of the solvent or surfactant. This result indicates that the dispersants had no influence on the evaluation of the bioconcentration potential of these test substances.  相似文献   
17.
Bioaccumulation is an important aspect for the fate and effects of xenobiotics in the environment. In this study we used a radiolabeled nonylphenol isomer to investigate the bioconcentration in Daphnia magna at different ages. Apart from the total radioactivity we measured the metabolism of p353-NP in D. magna, to calculate the amount of p353-NP compared to total radioactivity found within the daphnids. Bioconcentration factors, based on wet weight, calculated from the rate constants for total radioactivity in neonates and adults were 4271 kg/l and 760 kg/l respectively, leading to a 5.6 deviance in bioconcentration. This deviance was even more pronounced, nearly one order of magnitude, for the p353-NP concentration with bioconcentration factors of 302 kg/l for neonates and 31 kg/l for adults. We were able to describe the bioconcentration for all daphnids by a weight-dependent one- compartment model. These results pointed out that it is not possible to compare bioconcentration experiments conducted with different substances and different sized daphnids. Additionally it was shown that it is not possible to describe the bioconcentration by measuring the total radioactivity. Metabolism of nonylphenol occurs at a very fast rate and bioconcentration is not triggered by the partition between two phases, but by metabolism. Discrimination between the two mechanisms was achieved using radiolabeled substances and a pseudo two-compartment model to describe metabolism and elimination by two rate constants which afterwards can be compared between different substances.  相似文献   
18.
Constructed wetlands are a potential method for the removal of two pharmaceutical and personal care products from wastewater effluent. Triclosan (TCS; 5-chloro-2-[2,4-dichlorophenoxy]phenol) and triclocarban (TCC; 3,4,4′-trichlorocarbanillide) are antimicrobial agents added to a variety of consumer products whose accumulation patterns in constructed wetlands are poorly understood. Here, we report the accumulation of TCS, its metabolite methyl-triclosan (MTCS; 5-chloro-2-[2,4-dichlorophenoxy]), and TCC in wetland plant tissues and sediments. Three wetland macrophytes: Typha latifolia, Pontederia cordata, and Sagittaria graminea were sampled from a constructed wetland in Denton, Texas, USA. MTCS concentrations were below the method detection limit (MDL) for all species. TCS root tissue concentrations in T. latifolia were significantly greater than root concentrations in P. cordata (mean ± SE in ng g−1: 40.3 ± 11.3 vs. 15.0 ± 1.9, respectively), while for TCC, shoot tissue concentrations in S. graminea were significantly greater than in T. latifolia (22.8 ± 9.3 vs. 9.0 (MDL), respectively). For both TCS and TCC, T. latifolia root tissue concentrations were significantly greater than shoot concentrations (TCS: 40.3 ± 11.3 vs. 17.2 ± 0.2, TCC: 26.0 ± 3.6 vs. 9.0, (MDL)). TCC concentrations in P. cordata roots were significantly greater than in shoots (34.4 ± 5.3 vs. 15.4 ± 2.8, respectively). TCS concentrations in T. latifolia roots and sediments and TCC concentrations in sediments generally decreased from wetland inflow to outflow. To our knowledge, this is the first study documenting species and tissue specific differences in the accumulation of TCS and TCC in plants from an operational constructed wetland. The species specific differences in bioaccumulation suggest TCS and TCC removal from constructed wetlands could be enhanced through targeted plantings.  相似文献   
19.
A continuous supply of water with defined stable concentrations of hydrophobic chemicals is a requirement in a range of laboratory tests such as the OECD 305 protocol for determining the bioconcentration factor in fish. Satisfying this requirement continues to be a challenge, particularly for hydrophobic chemicals. Here we present a novel solution based on equilibrium passive dosing. It employs a commercially available unit consisting of ∼16 000 polydimethylsiloxane (PDMS) tubes connected to two manifolds. The chemicals are loaded into the unit by repeatedly perfusing it with a methanol solution of the substances that is progressively diluted with water. Thereafter the unit is perfused with water and the chemicals partition from the unit into the water. The system was tested with nine chemicals with log KOW ranging from 4.1 to 6.3. The aqueous concentrations generated were shown to be largely independent of the water flow rate, and the unit to unit reproducibility was within a factor of ∼2. In continuous flow experiments the aqueous concentrations of most of the study chemicals remained constant over 8 d. A model was assembled that allows prediction of the operating characteristics of the system from the log KOW or PDMS/water partition coefficient of the chemical. The system is a simple, safe, predictable and flexible tool that generates stable aqueous concentrations of hydrophobic chemicals.  相似文献   
20.
Soil, sediment, water, and biota collected from the western coast of Korea were analyzed to determine occurrence and sources of perfluorinated compounds (PFCs). PFCs were significantly concentrations of PFCs were measured in some water and biological samples, while concentrations of PFCs in soils and sediments were relatively low. The most widely detected compound was found to be perfluorooctanesulfonate (PFOS), with a maximum concentration in water of 450 ng/L and in fish of 612 ng/g, dw. PFOS concentrations in water and biota were both less than those thought to cause toxicity. However, in both cases concentrations were within a factor of 10 of the toxicity threshold concentration. Concentrations of PFCs were significantly greater downstream than those upstream on the same river, suggesting point sources. Overall, the detection of PFCs at relatively great concentrations in various environmental matrixes from this region of Korea suggests that further studies characterizing PFCs and their potential risk to both humans and wildlife are needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号