首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
安全科学   2篇
废物处理   25篇
环保管理   6篇
综合类   5篇
基础理论   1篇
污染及防治   2篇
  2019年   1篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   12篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有41条查询结果,搜索用时 906 毫秒
11.
Increasing volumes of municipal solid waste (MSW) pose disposal problems for many cities. Costs are rising as landfilling becomes more difficult. The production of clean transportation fuels (methanol or hydrogen) from MSW is one economically and environmentally promising option for dealing with these problems. An attractive feature is that elimination of essentially all air pollutant emissions is inherent in the process. Current and future air emissions standards should be easily met. Methanol or hydrogen used in fuel cell vehicles (FCV) can help address problems of deteriorating urban air quality due to vehicle pollution and heavy dependence of the transport sector on imported petroleum. Buses are initial targets for commercial application of fuel cells. Coupled with FCVs, MSW could become a major transportation energy resource. For example, less than 25% of New York City's MSW supply would be sufficient to produce the methanol or hydrogen needed to fuel the entire city's bus fleet, if the buses were fuel cell powered. Estimated breakeven tipping fees required for hydrogen or methanol from MSW to compete with the cost of these fuels made from natural gas today are $52 to $89/raw tonne MSW for hydrogen and $64 to $104/raw tonne MSW for methanol (in 1991$), depending on the gasification technology considered. For comparison, the average tipping fee today in New York City is $74/tonne (1991$). Because of the high fuel economies expected for fuel cell buses, total lifecycle costs per bus-km could be lower than for conventional diesel-engine buses.  相似文献   
12.
Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed.Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.  相似文献   
13.
Thermal treatment of refuse derived fuel (RDF) in waste-to-energy (WtE) plants is considered a promising solution to reduce waste volumes for disposal, while improving material and energy recovery from waste. Incineration is commonly applied for the energetic valorisation of RDF, although RDF gasification has also gained acceptance in recent years. In this study we focused on the environmental properties of bottom ash (BA) from an RDF incineration (RDF-I, operating temperature 850-1000 °C) and a RDF gasification plant (RDF-G, operating temperature 1200-1400 °C), by evaluating the total composition, mineralogy, buffering capacity, leaching behaviour (both at the material’s own pH and as a function of pH) of both types of slag. In addition, buffering capacity results and pH-dependence leaching concentrations of major components obtained for both types of BA were analysed by geochemical modelling. Experimental results showed that the total content of major components for the two types of BA was fairly similar and possibly related to the characteristics of the RDF feedstock. However, significant differences in the contents of trace metals and salts were observed for the two BA samples as a result of the different operating conditions (i.e. temperature) adopted by the two RDF thermal treatment plants. Mineralogy analysis showed in fact that the RDF-I slag consisted of an assemblage of several crystalline phases while the RDF-G slag was mainly made up by amorphous glassy phases. The leached concentrations of major components (e.g. Ca, Si) at the natural pH of each type of slag did not reflect their total contents as a result of the partial solubility of the minerals in which these components were chemically bound. In addition, comparison of total contents with leached concentrations of minor elements (e.g. Pb, Cu) showed no obvious relationship for the two types of BA. According to the compliance leaching test results, the RDF-G BA would meet the limits of the Italian legislation for reuse and the European acceptance criteria for inert waste landfilling. RDF-I BA instead would meet the European acceptance criteria for non hazardous waste landfilling. A new geochemical modelling approach was followed in order to predict the leaching behaviour of major components and the pH buffering capacity of the two types of slags on the basis of independent mineralogical information obtained by XRD analysis and the bulk composition of the slag. It was found that the combined use of data regarding the mineralogical characterization and the buffering capacity of the slag material can provide an independent estimate of both the identity and the amount of minerals that contribute to the leaching process. This new modelling approach suggests that only a limited amount of the mineral phases that control the pH, buffering capacity and major component leaching from the solid samples is available for leaching, at least on the time scale of the applied standard leaching tests. As such, the presented approach can contribute to gain insights for the identification of the types and amounts of minerals that control the leaching properties and pH buffering capacity of solid residues such as RDF incineration and gasification bottom ash.  相似文献   
14.
This paper reports the results of gasification tests using a catalytic fluidized bed gasifier to obtain a H2-rich stream by feeding different pellets made of wood, biomass/plastic and olive husks to the gasifier. The effects of both the steam supply and an in-bed catalyst on gasifier performance have been investigated. In general, pelletization was an effective pre-treatment for improving the homogeneity of the fuel and the reliability of the feeding devices. The use of biomass/plastic pellets in a catalyst bed yielded good results in terms of the hydrogen concentration (up to 32% vol.), even if an increase in tar production and in the fine/carbon elutriation rate was observed in comparison with wood pellets.  相似文献   
15.
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products.The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500 °C but the polycyclic aromatic hydrocarbons became the major compounds at 900 °C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700 °C under steam gasification condition.For WBC, both char utilization by pyrolysis at low temperature (500 °C) and syngas recovery by steam gasification at higher temperature (900 °C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500 °C) might be one of viable options. Steam gasification at 900 °C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.  相似文献   
16.
Waste disposal systems conventionally exhibit many problems, such as difficulties in finding final disposal sites for incinerator residues and the issue of how to recycle waste materials. Some new technologies have been developed to solve such problems, including ash melting and gasification melting. Furthermore, to improve the power generation efficiency of waste treatment facilities so that their energy is used more efficiently, combined stoker/gas turbine power generation (super waste power generation) technology has been developed. Through examination of two cases in this study, environmental impacts and costs were determined using lifecycle assessment (LCA) and lifecycle cost (LCC) methods in a model city. In case 1, a stoker furnace was compared to a combined stoker/gas turbine system. In case 2, a stoker furnace plus ash melting system was compared to a gasification melting system. The results demonstrate that the stoker furnace has a lower environmental impact than the combined stoker/gas turbine system in case 1, and that the stoker plus ash melting system costs less than the gasification melting system in case 2, but both systems had strong impacts on the environment.  相似文献   
17.
The influence of additives on the steam gasification of PVC waste   总被引:1,自引:0,他引:1  
This study is concerned with the influence of additives on the steam gasification of polyvinyl chloride (PVC) waste. Three types of PVC waste, namely pipe waste, cable waste, and flooring, were tested. The presence of additives proved to have a profound effect on the carbon-to-gas conversion. Plasticizers and other organic additives caused an increase in carbon-to-gas conversion. Inorganic additives, especially calcium, caused a decrease in carbon-to-gas conversion, resulting in an overall decrease in the yield of syngas for all three types of waste. This decrease is probably caused by the deposition of Ca on the surface of the alumina bed material. In addition, calcium reacts with the HCl formed to give CaCl2. This results in a decrease in the recovery of hydrochloric acid. Received: July 19, 2000 / Accepted: October 9, 2000  相似文献   
18.
The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.  相似文献   
19.
This work reports the effect of pressure on the steam/oxygen gasification at 1000 °C of the char derived from low temperature-pressure distillation of granulated scrap tyres (GST). The study was based on the analysis of gas production, carbon conversion, cold gas efficiency and the high heating value (HHV) of the product. For comparison, similar analyses were carried out for the gasification of coals with different rank.In spite of the relatively high ash (≈12 wt.%) and sulphur (≈3 wt.%) contents, the char produced in GST distillation can be regarded as a reasonable solid fuel with a calorific value of 34 MJ kg−1. The combustion properties of the char (EA ≈ 50 kJ mol−1), its temperature of self-heating (≈264 °C), ignition temperature (≈459 °C) and burn-out temperature (≈676 °C) were found to be similar to those of a semi-anthracite.It is observed that the yield, H2 and CO contents and HHV of the syngas produced from char gasification increase with pressure. At 0.1 MPa, 4.6 Nm3 kgchar−1 of syngas was produced, containing 28% v/v of H2 and CO and with a HHV around 3.7 MJ Nm−3. At 1.5 MPa, the syngas yield achieved 4.9 Nm3 kgchar−1 with 30% v/v of H2-CO and HHV of 4.1 MJ Nm−3. Carbon conversion significantly increased from 87% at 0.1 MPa to 98% at 1.5 MPa.It is shown that the char derived from distillation of granulated scrap tyres can be further gasified to render a gas of considerable heating value, especially when gasification proceeds at high pressure.  相似文献   
20.
This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes.Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号