首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1583篇
  免费   54篇
  国内免费   103篇
安全科学   33篇
废物处理   19篇
环保管理   239篇
综合类   441篇
基础理论   216篇
污染及防治   476篇
评价与监测   240篇
社会与环境   61篇
灾害及防治   15篇
  2024年   2篇
  2023年   12篇
  2022年   14篇
  2021年   28篇
  2020年   49篇
  2019年   21篇
  2018年   41篇
  2017年   27篇
  2016年   42篇
  2015年   51篇
  2014年   47篇
  2013年   110篇
  2012年   87篇
  2011年   181篇
  2010年   104篇
  2009年   177篇
  2008年   159篇
  2007年   125篇
  2006年   72篇
  2005年   42篇
  2004年   34篇
  2003年   45篇
  2002年   34篇
  2001年   24篇
  2000年   36篇
  1999年   19篇
  1998年   16篇
  1997年   16篇
  1996年   19篇
  1995年   11篇
  1994年   14篇
  1993年   28篇
  1992年   19篇
  1991年   3篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1740条查询结果,搜索用时 15 毫秒
11.
酒石酸淋洗过程中土壤重金属解吸动力学特征   总被引:1,自引:0,他引:1  
采用批处理淋洗的方法,研究了酒石酸淋洗修复张士污灌区土壤过程中镉、铅、铜、锌4种重金属离子解吸动力学特征。结果表明,酒石酸在12h条件下,达到对污染土壤中镉离子的最大去除率,铅、铜、锌3种重金属离子达到最大去除率则需要24h。4种重金属离子的解吸动力学过程可以用Elovich方程很好的描述,说明酒石酸去除重金属离子的过程是一种非均相扩散过程。此外,解吸速率曲线显示,反应初期相同时刻上酒石酸对铅离子的解吸速率最快,其次是铜和锌,最后是镉离子;反应后期同一时刻上铜和锌的解吸速率大于铅和镉。  相似文献   
12.
Red soil may play an important role in nitrous oxide (N2O) emissions due to its recent land use change pattern. To predict the land use change effect on N2O emissions, we examined the relationship between soil N2O flux and environmental determinants in four different types of land uses in subtropical red soil. During two years of study (January 2005-January 2007), biweekly N2O fluxes were measured from 09:00 to 11:00 a.m. using static closed chamber method. Objectives were to estimate the seasonal and annual N2O flux differences from land use change and, reveal the controlling factors of soil N2O emission by studying the relationship of dissolved organic carbon (DOC), microbial biomass carbon (MBC), water filled pore space (WFPS) and soil temperature with soil N2O flux. Nitrous oxide fluxes were significantly higher in hot-humid season than in the cool-dry season. Significant differences in soil N2O fluxes were observed among four land uses; 2.9, 1.9 and 1.7 times increased N2O emissions were observed after conventional land use conversion from woodland to paddy, orchard and upland, respectively. The mean annual budgets of N2O emission were 0.71-2.21 kg N2O-N ha−1 year−1 from four land use types. The differences were partly attributed to increased fertilizer use in agriculture land uses. In all land uses, N2O fluxes were positively related to soil temperature and DOC accounting for 22-48% and 30-46% of the seasonal N2O flux variability, respectively. Nitrous oxide fluxes did significantly correlate with WFPS in orchard and upland only. Nitrous oxide fluxes responded positively to MBC in all land use types except orchard which had the lowest WFPS. We conclude that (1) land use conversion from woodland to agriculture land uses leads to increased soil N2O fluxes, partly due increased fertilizer use, and (2) irrespective of land use, soil N2O fluxes are under environmental controls, the main variables being soil temperature and DOC, both of which control the supply of nitrification and denitrification substrates.  相似文献   
13.
The present study was undertaken to determine the persistence and mobility of 2,4-dichlorophenoxy acetic acid (2,4-D) in unsaturated soil zone under real field conditions for the wheat crop in Roorkee, India. Three experimental plots were chosen in the agricultural field itself to represent the real field conditions in the study area and the potential movement and persistence of herbicide 2,4-D was investigated under three different irrigation treatments. The presence of herbicide along with soil water content was determined in soil at different depths at a temporal scale. The movement of the herbicide was also simulated numerically by solving the coupled soil water content movement and mass transport equations using HYDRUS-1D. The measured soil water content trends and the 2,4-D concentration profiles showed a good agreement with the numerically simulated results. The maximum effect of the herbicide was primarily retained up to 15 cm of the soil profile. The current existing dosage of 0.5 kg ha−1 of pesticide was found to be safe to avoid soil contamination as no residue of 2,4-D was traced at the end of the wheat crop season in any of the plots. Higher concentrations of 2,4-D were also simulated numerically and the simulated results showed that the safe dosage of pesticide application would depend on irrigation treatments.  相似文献   
14.
The fungicide vinclozolin and insecticide λ-cyhalothrin are widely used to control canola (Brassica spp.) diseases and insect pests, respectively, in Canada. We investigated non-target effects of these pesticides, applied at recommended rates, on soil microbial biomass, functional bacterial diversity and functional community structure of soil bacteria (by evaluating patterns of C substrate utilization) in canola rhizosphere and bulk soil at three locations in Alberta from 2002 to 2004. Experimental treatments were (a) untreated control, (b) vinclozolin fungicide foliar application, (c) λ-cyhalothrin insecticide foliar application, and (d) vinclozolin and λ-cyhalothrin applications. No significant pesticide effects on soil microbial biomass or functional bacterial diversity were observed, but the functional structures of soil bacteria were altered. In 1 of 12 cases, the control treatment had a different soil bacterial community structure from the 3 pesticide treatments. The fungicide treatment had different bacterial community structures from the control or insecticide treatments in 3 of 12 cases, the insecticide treatment had different community structures from the control or fungicide treatments in 4 of 12 cases, and the combined fungicide and insecticide treatment had different community structures from the other treatments in 3 of 12 cases. Therefore, evaluating soil bacterial functional structures revealed pesticide effects that were not detected when bacterial diversity or microbial biomass were measured in canola rhizosphere or bulk soil.  相似文献   
15.
Sub-Saharan Africa is large and diverse with regions of food insecurity and high vulnerability to climate change. This project quantifies carbon stocks and fluxes in the humid forest zone of Ghana, as a part of an assessment in West Africa. The General Ensemble biogeochemical Modeling System (GEMS) was used to simulate the responses of natural and managed systems to projected scenarios of changes in climate, land use and cover, and nitrogen fertilization in the Assin district of Ghana. Model inputs included historical land use and cover data, historical climate records and projected climate changes, and national management inventories. Our results show that deforestation for crop production led to a loss of soil organic carbon (SOC) by 33% from 1900 to 2000. The results also show that the trend of carbon emissions from cropland in the 20th century will continue through the 21st century and will be increased under the projected warming and drying scenarios. Nitrogen (N) fertilization in agricultural systems could offset SOC loss by 6% with 30 kg N ha−1 year−1 and by 11% with 60 kg N ha−1 year−1. To increase N fertilizer input would be one of the vital adaptive measures to ensure food security and maintain agricultural sustainability through the 21st century.  相似文献   
16.
Plant emission of volatile organic compounds (VOCs) has a significant impact on arthropods and plants and alters important functions in the agroecosystems. Three field source–sink microcosm experiments evaluated variation in wheat plants volatile emissions and its impact on neighbouring wheat plants’ performance caused by genotype, aphid herbivory and soil nutrient availability due to different cropping histories. An electronic nose detected qualitative differences in volatile emissions. Two of the experiments established the source–sink relationships forcing the volatiles through pipes. In these experiments wheat genotype was introduced as a variable of the source plants. In the third experiment, the emissions of volatiles dispersed naturally affecting the neighbourhood only by proximity and wheat genotype was a controlled factor. Plant genotype, aphid attack and soil chemical changes caused by different cropping histories affected wheat volatile emissions despite independent variations in plant biomass or resource allocation. This is the first report of changes in distant plant biomass according to neighbouring plant genotype and agricultural history. Wheat VOCs emissions were associated with changes in soil organic C, Ca, Mg, total nitrogen and cation exchange capacity caused by the different cropping histories of the soils tested. Variability in total biomass and resource allocation increased due to changes in VOCs emissions promoted by longer cropping history or aphid feeding in two genotypes. When volatiles were naturally dispersed into the neighbourhood, tiller weight in the sink individuals depended on plant genotype and cropping history of its neighbours (i.e. VOCs source). These findings highlight that ecological and environmental consequences of agricultural practices are more complex than normally thought.  相似文献   
17.
运用静态箱-预浓缩-气相色谱-质谱法和静态箱-色谱法分别测量了南亚热带鼎湖山针阔叶混交林土壤-大气COS和CO2通量。结果表明,土壤吸收COS,凋落物保留样地COS吸收速率显著高于凋落物去除样地,3月土壤COS吸收速率最高。土壤COS吸收速率与大气COS浓度正相关。土壤COS吸收速率与土壤温度、土壤含水量单独未表现出显著相关性,但凋落物保留样地COS吸收速率与土壤温度和含水量两者共同呈二次多项式相关。凋落物保留样地CO2释放速率高于凋落物去除样地。与土壤COS吸收速率相反,土壤CO2释放速率3月最低,7月最高,主要受温度和土壤含水量的影响。土壤CO2释放速率与土壤温度呈指数相关,与土壤含水量直线相关,多元回归分析表明,土壤CO2释放受温度和含水量的共同影响。土壤COS吸收速率随土壤CO2释放速率的增加而增加,表明两者可能受某些共同因素的影响。  相似文献   
18.
GC/MS测定土壤中的酞酸酯   总被引:3,自引:0,他引:3  
本文针对土壤中酞酸酯类化合物,采用快速压力溶剂萃取仪(ASE)提取,弗罗里柱净化,气相色谱-质谱联用仪(GC/MS)对酞酸酯类有机物进行定性、定量分析。实验过程中采用浓硫酸对实验器皿进行清洗,有效地防止环境中酞酸酯类有机物对样品的污染。结果表明:平均加标回收率在87%~106%之间,相对标准偏差在2.5%~6.5%之间,检出限在0.51μg/kg~1.6μg/kg之间。  相似文献   
19.
本实验以自行分离得到的具有解磷能力的菌株BL-21为研究对象,经鉴定为侧孢芽孢杆菌(Bacilluslaterosporus),以蜡状芽孢杆菌BC-01为对照菌株,对菌株BL-21的解磷能力进行研究。分别以4种不同土壤(大豆土、小麦土、玉米土、水稻土)为唯一磷源进行测定。结果表明,在以小麦土为唯一磷源的培养液体中菌株BL-21的解磷能力要大于菌株BC-01.在以玉米土,大豆,水稻土唯一磷源的无机磷液体培养基中BL-21的解磷能力于BC-01的解磷能力基本相同。  相似文献   
20.
本文阐述了用微波消解——原子吸收分光光度法测定土壤中的铜锌镍铬锰铅镉。通过硝酸-盐酸-氢氟酸-高氯酸体系消解液对土壤样品进行消解,选择出微波消解的最佳消解条件。通过对微波消解体系和传统电热板硝酸-氢氟酸-高氯酸消解体系进行对比实验,前者不仅操作简便快捷赶酸时间短,而且准确度高、精密度好,提高了工作效率,是一种值得推广的土壤消解方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号