首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
  国内免费   19篇
综合类   27篇
基础理论   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有28条查询结果,搜索用时 26 毫秒
11.
利用西风盛行时在青岛采集的总悬浮颗粒物(TSP)样品,分析其中总P (TP)和溶解态P (DP)浓度与气团后向轨迹的关系,采用正定矩阵因子分析(PMF)和潜在源贡献因子分析(PSCF)方法解析TP和DP的来源及其潜在贡献区域.结果表明:青岛气溶胶中TP主要来自地壳源的贡献(45%);其次是机动车排放源(22%)、燃烧源(21%)和工业源(12%);海盐源的贡献最小(<1%).但DP主要来自人为源的贡献,其中机动车排放源的贡献为35%,燃烧源和/或二次源为28%、工业源为25%;地壳源和海盐源等自然源的贡献分别为9%和1%.相同来源的TP和DP其潜在贡献区域相似,但DP的贡献区域范围更广.地壳源P (TP和DP)的贡献区域集中在沙尘从源地向我国近海传输的路径上,海盐源P的贡献区域位于黄、渤海,工业源P的贡献区域主要为河南、山东以及蒙古国南部等地区,燃烧源/二次源P的主要贡献区域为山东南部和江苏北部区域,机动车排放源P的贡献区域则主要为北京、天津、山东、江苏等区域.  相似文献   
12.
张帅  石金辉  姚小红  高会旺 《环境科学》2018,39(4):1512-1519
于2012-12~2013-04在青岛采集119个气溶胶样品,分析了冬、春季节气溶胶中乙二酸的浓度分布特征及影响因素.青岛大气气溶胶中乙二酸的浓度冬季为31~370 ng·m-3,平均为104 ng·m-3;春季为11~1926 ng·m-3,平均为400 ng·m-3,二者存在显著的季节差异.不同天气状况影响气溶胶中乙二酸的分布,霾天时乙二酸浓度最高,其次是沙尘天,雾天与晴天时的基本相当,雨天时的浓度最低.青岛大气气溶胶中乙二酸与温度和太阳辐射之间存在显著正相关关系,表明光化学氧化的二次生成过程对气溶胶中的乙二酸有一定影响.冬、春季气溶胶中乙二酸二次生成的机理可能不同,冬季主要为水相氧化过程、春季为气相氧化过程.PMF源解析结果也显示,二次源是青岛大气气溶胶中乙二酸的主要来源,其贡献冬季约为45%、春季约为70%.春季青岛气溶胶中乙二酸浓度显著高于冬季,其主要原因可能是春季温度和太阳辐射显著高于冬季,增强了颗粒态乙二酸的二次生成过程.  相似文献   
13.
东海大气气溶胶中无机氮组分的分布特征   总被引:3,自引:1,他引:2  
石金辉  张云  李瑞芃  高会旺  张经 《环境科学》2010,31(12):2835-2843
利用2006年11~12月、2007年2~3月及2008年5~6月在东海4个航次中采集的33个总悬浮颗粒物样品和7套Anderson分级样品,分析了其中NH 4+、NO 3-和NO 2-的浓度,探讨了东海气溶胶中氮组分的季节变化和粒径分布.气溶胶中NH 4+的浓度为2.6~646.9 nmol.m-3,冬、春季较高,夏季较低.NO 3-的浓度为5.5~281.5 nmol.m-3,冬季较高,春、夏季较低.NO 2-的浓度很低,0.5 nmol.m-3.气溶胶中氮组分的相对贡献具有一定的季节变化趋势,冬季NH 4+和NO 3-的贡献相当,春、夏季以NH 4+的贡献为主.NO 3-的粒径分布月变化明显,11~12月主要分布在2.1μm的细粒子上,2~3月、5~6月分别集中在1.1~4.7μm和2.1~7.0μm的粗粒子上.NH 4+的粒径分布无明显月季差异,均主要分布在1.1μm的细粒子上.后向轨迹分析表明气团的来源和迁移路径显著影响气溶胶中无机氮的分布.气团来自污染较重的陆源,无机氮在大气中的浓度(nmol.m-3)和在颗粒物中的浓度(μmol.g-1)均较高;气团来自清洁的海洋源,无机氮在大气中和颗粒物中的浓度均较低.气团起源自陆源但在海上经过长距离的迁移,则无机氮在大气中的浓度相对较低,在颗粒物中的浓度相对较高.  相似文献   
14.
青岛大气气溶胶水溶性无机离子研究:季节分布特征   总被引:9,自引:4,他引:5  
为了全面了解当前青岛地区大气气溶胶中水溶性组分的特征及来源,于2008年1~12月在青岛市区连续采集了总悬浮颗粒物(TSP)样品,运用离子色谱法对其主要的水溶性阴阳离子进行了分析.结果表明,SO24-、NO3-、NH4+和Cl-是TSP中水溶性离子的主要成分,四者质量浓度之和占总水溶性离子质量浓度的86.9%.TSP及其水溶性组分存在明显的季节变化,其来源也存在多源性.Na+、NH4+、Ca2+、F-、Mg2+均为冬季最高,夏季最低,K+、PO34-为秋季最高,夏季最低,Cl-为冬季最高,秋季最低,NO3-则为春季最高,夏季最低,而SO24-为春季最高,秋季最低.不同天气对颗粒物和气溶胶中水溶性离子影响很大.颗粒物浓度在晴天时最低,其次是雾天,再次是烟雾和霾,沙尘天气下质量浓度最高.Na+、Mg2+、Ca2+、F-、Cl-和PO34-在烟雾天气下的平均浓度最高,而NH4+、K+、NO3-和SO24-则是在霾天气下质量浓度最高.  相似文献   
15.
利用2010年春季在青岛观测的不同粒径大气颗粒物数浓度,结合同期的Micaps天气图资料及后向轨迹分析资料,探讨了不同天气条件及气团来源不同时青岛大气颗粒物数浓度谱的变化特征.结果表明,沙尘发生前12h,大气中0.3~1.0μm的细粒子数浓度逐渐小幅升高,沙尘发生时>1.0μm粗颗粒物数浓度较沙尘发生前升高了1~10倍,0.3~1.0μm细颗粒物数浓度则降低了20%~45%.降雨使>1.0μm粗粒子数浓度降低>50%,降雨后大气颗粒物尤其是细粒子数浓度很快回升.雾和霾天气发生时1.0μm粗粒子数浓度较高,而局地源气溶胶中粗粒子数浓度较低,<0.7μm细粒子相对贡献较大.  相似文献   
16.
氨基化合物是大气气溶胶中一类重要的有机氮化合物,由于其具有吸湿性,且沉降入海后可被海洋浮游生物直接利用,因此,可能在大气化学方面和海洋生态系统中具有重要作用.基于此,本研究利用2007年6月至2008年5月在青岛采集的55个总悬浮颗粒物样品,采用邻苯二甲醛/N-乙酰-L-半胱氨酸柱前衍生高效液相色谱法,分析了其中游离氨基化合物(FAC)的浓度.结果表明,气溶胶中总FAC浓度为0.14~8.33 nmol·m-3,其中,精氨酸、甲胺和丙氨酸的贡献最大.不同季节FAC的组成不同,精氨酸在夏、秋季节对FAC的贡献高于冬、春季节,甲胺的相对贡献则在夏季较低,而冬、春季较高.采样期间气团来源和天气状况的不同会影响气溶胶中FAC的浓度和组成.FAC在受南方陆源影响的气溶胶中浓度最高,北方陆源次之,海洋源气溶胶中的浓度最低,蛋白质类氨基化合物对总FAC的贡献在海洋源气溶胶中最高,在南方陆源气溶胶中最低.雾天和烟霾时气溶胶中FAC的浓度分别为晴天时的2.5倍和1.8倍,沙尘天气时FAC浓度与晴天时基本相当,蛋白质类氨基化合物对总FAC的贡献在晴天和雨后相对较高,在烟霾和雾天时相对较低.  相似文献   
17.
利用2016年6~7月在青岛采集的PM_(2.5)和总悬浮颗粒物(TSP)样品,分析其中12种微量元素总态和溶解态浓度,讨论了微量元素在粗、细粒子中的浓度及溶解度的分布特征,并估算了微量元素的沉降通量.结果表明,青岛气溶胶中地壳元素Al、Fe、Sr、Mn、Ba总态浓度的55%~60%集中在粗粒子中,人为元素Cr、Ni、V、Zn、Pb、As、Cd的65%~85%集中在细粒子中.但无论是地壳元素还是人为元素其溶解态浓度均主要分布在细粒子中,Al、Fe、Mn、Ba在细粒子中的占比为50%~80%,Cr、Ni、V、Zn、Pb、As、Cd的为70%~90%.微量元素溶解度在细粒子中的高于粗粒子中的,细粒子中微量元素的溶解态浓度与酸组分呈显著正相关,溶解度与p H呈显著负相关,表明酸化作用可能是影响细粒子中微量元素溶解度的主控因子.不同微量元素的总沉降通量中溶解态部分的贡献不同,Al和Fe溶解态部分的贡献仅为1%~2%,Sr、Ba、Cr、Pb的约为30%~40%,Mn、Ni、V、Zn、As、Cd的约为50%~60%.大气沉降的溶解态Fe可支持(194±150)mg·(m2·d)-1浮游植物碳的生产,对黄海初级生产力的贡献约为10%.  相似文献   
18.
青岛大气气溶胶中铁的溶解度及其影响因素   总被引:2,自引:1,他引:1  
大气气溶胶的干湿沉降带来的铁对海洋初级生产和固碳能力有着重要影响,但这种影响从根本上决定于沉降铁的溶解度.本文利用2012年12月在青岛连续采集的31个总悬浮颗粒物(TSP)样品,分析了其中微量元素Fe的总浓度和溶解态浓度,讨论了颗粒物浓度、气溶胶来源及酸化过程对Fe溶解度的影响.结果表明,气溶胶中Fe的总浓度和溶解态浓度分别为(3248±1683)ng·m-3和(43.3±16.4)ng·m-3,溶解度为0.57%~4.86%,平均为1.63%±1.02%.随着气溶胶中总Fe浓度的增加,Fe溶解度呈现规律性降低.气溶胶中Fe的溶解度与富集因子(EF)无相关关系,而与无机和有机酸性离子存在显著正相关关系.气团后向轨迹的聚类分析显示,观测期间,64.5%的气溶胶样品主要受北方沙尘源(DS)影响,35.5%的样品主要受到华北城市群等人为源(AS)影响.AS样品中Fe的溶解度平均为2.06%,高于DS样品中的1.36%.两组样品中Fe的EF值相当,但AS样品中酸性离子与溶解度的相关关系明显好于DS组,表明酸化过程可能是造成两组样品Fe溶解度差异的主要原因.  相似文献   
19.
青岛大气降水中微量元素的浓度及溶解度   总被引:1,自引:1,他引:0  
利用2016年6月~2017年5月在青岛采集的35个降水样品,分析其中8种微量元素的总态和溶解态浓度,讨论了大气降水中微量元素的浓度及其溶解度的变化特征,并探讨了影响大气降水中微量元素溶解度的因素.结果表明,青岛降水中微量元素的总态浓度以Al和Fe的最高,其次是Zn、Mn、Ba、Pb、Sr、V的较低;溶解态浓度以Zn的最高,其次是Al、Mn、Fe、Ba、Sr、Pb和V的较低;溶解度以地壳元素Al和Fe的最低,为5%左右,受到人为源影响的元素溶解度相对较高,Pb和Ba的为10%~40%,Mn和Sr的为20%~60%,Zn和V溶解度最高,平均约为55%.季节变化显示不同元素总态和溶解态浓度基本呈现冬、春季明显高于夏、秋季,溶解度基本表现为春季最高.持续降雨的前后期微量元素的总态和溶解态浓度均呈现明显降低,但溶解度的变化趋势在不同降雨过程中不一致,pH变化是控制降水中微量元素溶解度的主要因子.  相似文献   
20.
分析了2017-11~2018-01在青岛采集的气溶胶样品中总磷(TP)、溶解态总磷(DTP)、溶解态无机磷(DIP)和溶解态有机磷(DOP)浓度,讨论了来自北方快速移动的干冷气团(NS)和局地停滞性暖湿气团(LS)中气溶胶P浓度和溶解度的差异及其原因.TP浓度在NS和LS气溶胶中分别为(137.3±49.3)ng/m3和(115.8±45.8)ng/m3,DTP对TP的贡献(即P溶解度)分别为(20.7±5.6)%和(45.9±15.7)%.DTP中以DIP为主,其贡献在NS和LS气溶胶中分别为65.6%和55.3%.NS气溶胶中人为源P对TP的贡献为69%,略低于LS气溶胶中的72%.LS气溶胶中较高的酸化程度和相对湿度(RH)以及较慢的气团传输速率是其P溶解度显著高于NS气溶胶的原因.RH<60%时,无论酸化程度高低,P溶解度不超过30%;RH>60%时,酸化条件下,高的相对湿度和低的气团传输速率有利于显著提升P溶解度.因此,日趋严重的大气污染可能提高了我国近海大气生物可利用P的入海通量.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号