首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   8篇
  国内免费   19篇
安全科学   4篇
废物处理   17篇
环保管理   34篇
综合类   87篇
基础理论   6篇
污染及防治   13篇
评价与监测   2篇
社会与环境   9篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   8篇
  2014年   16篇
  2013年   14篇
  2012年   8篇
  2011年   30篇
  2010年   7篇
  2009年   21篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
101.
Municipal Solid Waste in general and its organic fraction in particular is a potential renewable and non-seasonal resource. In this work, a life cycle assessment has been performed to evaluate the environmental impacts of two future scenarios using biogas produced from the organic fraction of municipal solid waste (OFMSW) to supply energy to a group of dwellings, respectively comprising distributed generation using solid oxide fuel cell (SOFC) micro-CHP systems and condensing boilers. The London Borough of Greenwich is taken as the reference case study. The system is designed to assess how much energy demand can be met and what is the best way to use the digestible waste for distributed energy purposes.The system is compared with two alternative scenarios fuelled by natural gas: a reference scenario, where the electricity is supplied by the grid and the heat is supplied from condensing boilers, and a fuel cell micro-CHP system. The results show that, although OFMSW alone can only supply between 1% and 4% of the total energy demand of the Borough, a saving of ∼130 tonnes of CO2 eq per year per dwelling equipped with micro-CHP is still achievable compared with the reference scenario. This is primarily due to the surplus electricity produced by the fuel cell when the micro-CHP unit is operated to meet the heat demand. Use of biogas to produce heat only is therefore a less desirable option compared with combined heat and power production. Further investigation is required to identify locally available feedstock other than OFMSW in order to increase the proportion of energy demand that can be met in this way.  相似文献   
102.
The roadway network in the USA earned a grade of D representing poor condition in the latest report card from the American Society of Civil Engineers. To maintain economic and environmental sustainability during the roadway network development and rehabilitation, it is critical to apply sustainable materials and intelligent design. A good estimation on project-level life-cycle costs and environmental impacts is one of the important steps in the highway investment decision-making process. This article examines the current life-cycle cost analysis (LCCA) practice employed by the Colorado Department of Transportation (CDOT) in their pavement investment decision-making process, and proposes a regional environmental life-cycle assessment (LCA) model to evaluate the greenhouse gas (GHG) emissions associated with Colorado highway pavements. Both LCCA and LCA are performed for a highway reconstruction project with Portland cement concrete pavement (PCCP) and hot-mixed asphalt (HMA) alternatives. The LCCA is 7.4% in favour of HMA. Since the difference is less than 10%, it indicates equivalent designs. However, in the LCA, the GHG emission from PCCP is 26% less than the HMA over the 40-year analysis period. The vehicle fuel consumption will increase due to the deterioration of pavements. But the increased user cost is not included in the current LCCA employed by CDOT as well as user cost due to crashes and nonuser costs. The LCA can be an optional criterion for the selection of the preliminary pavement type.  相似文献   
103.
Life cycle assessment (LCA) is a popular tool used to evaluate the environmental performance of municipal solid waste (MSW) management systems. Although reviews of LCAs of MSW have been undertaken to assess the validity of the ‘waste hierarchy,’ a recent review of the goal, scope and results of LCAs of mixed-material MSW management systems has yet to be performed. This paper is a comparative analysis of 20 process-based LCAs of MSW published between 2002 and 2008 in a total of 11 English-language peer-reviewed journals. It quantifies the methodological transparency of the studies and the frequency of use of particular system boundaries, types of data sources, environmental impact categories, impact weightings, economic valuations, sensitivity analyses, and LCA computer models. Net energy use (NEU), global warming potential (GWP), and acidification potential (AP) values for various types of MSW management systems are also compared using statistical indicators.The reviewed LCAs differ substantially in their system boundaries. Half or more of the LCAs either do not mention or are unclear in whether or not life cycle emissions from energy inputs or capital equipment are included in the calculation of results. Only four impact categories are common to more than half of the reviewed LCAs. The human and ecological toxicity impact categories are much less common than global warming potential, acidification, and eutrophication.A financial life cycle costing is present in eight of the reviewed LCAs, while an economic valuation of the environmental impacts is observed in five. Explicit sensitivity analyses are present in 4/20 of the studies, although many more LCAs evaluate the effects of varying model parameters by increasing the number of waste management scenarios. There is no consensus on whether or not to use the marginal or average source of electricity in calculating environmental impacts. Eight out of the 20 do not mention this source while the remaining LCAs are evenly split between the marginal and average electricity source. One quarter of the reviewed LCAs supply weighted results for the overall environmental performance of MSW management scenarios. All but one of these concurred with the ‘hierarchy of waste’ that the environmental performance of landfilling is lower than that of all the other treatment methods, and that thermal treatments are inferior to recycling.The comparative analyses of the NEU, GWP and AP results are based on 37, 45, and 42 MSW management scenarios, respectively. As measures of statistical dispersion, the interquartile ranges of the NEU, GWP and AP values are lowest for the landfilling (AP, NEU) and thermal treatment (GWP) scenarios. The results of the statistical analysis of the NEU, AP and GWP values appear to indicate that thermal treatment scenarios have a better environmental performance than landfilling, while the results for mixed treatment scenarios are less obvious. A comparison of the relative environmental performances of MSW treatment scenario types within each study did not provide a clear confirmation or repudiation of the waste hierarchy.This paper concludes that many recently published LCAs do not ensure that the methodological assumptions are made clear to the reader. Lack of transparency makes the results difficult to interpret, and hampers meaningful comparisons between the LCA results. A convergence in the adoption of particular assumptions that are more representative of MSW management systems would facilitate the comparison of the results.  相似文献   
104.
This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020.Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.  相似文献   
105.
This paper considers two alternative feedstocks for bioethanol production, both derived from household waste—Refuse Derived Fuel (RDF) and Biodegradable Municipal Waste (BMW). Life Cycle Assessment (LCA) has been carried out to estimate the GHG emissions from bioethanol using these two feedstocks. An integrated waste management system has been considered, taking into account recycling of materials and production of bioethanol in a combined gasification/bio-catalytic process. For the functional unit defined as the ‘total amount of waste treated in the integrated waste management system’, the best option is to produce bioethanol from RDF—this saves up to 196 kg CO2 equiv. per tonne of MSW, compared to the current waste management practice in the UK.However, if the functional unit is defined as ‘MJ of fuel equiv.’ and bioethanol is compared with petrol on an equivalent energy basis, the results show that bioethanol from RDF offers no saving of GHG emissions compared to petrol. For example, for a typical biogenic carbon content in RDF of around 60%, the life cycle GHG emissions from bioethanol are 87 g CO2 equiv./MJ while for petrol they are 85 g CO2 equiv./MJ. On the other hand, bioethanol from BMW offers a significant GHG saving potential over petrol. For a biogenic carbon content of 95%, the life cycle GHG emissions from bioethanol are 6.1 g CO2 equiv./MJ which represents a saving of 92.5% compared to petrol. In comparison, bioethanol from UK wheat saves 28% of GHG while that from Brazilian sugar cane – the best performing bioethanol with respect to GHG emissions – saves 70%. If the biogenic carbon of the BMW feedstock exceeds 97%, the bioethanol system becomes a carbon sequester. For instance, if waste paper with the biogenic carbon content of almost 100% and a calorific value of 18 MJ/kg is converted into bioethanol, a saving of 107% compared to petrol could be achieved. Compared to paper recycling, converting waste paper into bioethanol saves 460 kg CO2 equiv./t waste paper or eight times more than recycling.  相似文献   
106.
Time and again, there has been a hue and a cry that the world is running out of natural resources and the most prominent among those is the famous study entitled ‘The Limits to Growth’ by the ‘Club of Rome’. Since then the fear of scarcity of abiotic resources has been challenging human societies around the globe, particularly the research community. In this paper we will examine the case of the steel industry to argue how and why mineral resources depletion is an issue that needs to be addressed through life cycle assessment in more detail. This paper shows that a more comprehensive understanding about the current production trends of iron ore and steel, which also requires several vital metals such as copper, manganese, nickel and so on, can provide useful insights in assessing the potential future threat of shortages due to depletion of abiotic mineral resources.  相似文献   
107.
A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.  相似文献   
108.
Local authorities are generally in charge of household packaging waste management operations, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the packaging industry and the local authorities (regarding the costs involved in selective collection and sorting). In the present study, the costs and benefits of recycling, from the perspective of local authorities, are compared for Portugal, Belgium and Italy (in Lombardia region), adopting the same economic–financial methodology. The results show that the industry is not paying the net cost of packaging waste management. If the savings attained by diverting packaging waste from other treatment operations are not considered, it seems that the industry should increase the financial support to local authorities. However, if the avoided costs with other treatments are considered as a benefit for local authorities, the costs are generally outweighed by the benefits, and the financial support could, therefore, be reduced.  相似文献   
109.
Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail, beverage packaging and food waste is tested for a "High-tech" waste management system relying on high energy and material recovery and for a "Low-tech" waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for "Low-tech" systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.  相似文献   
110.
In the field of sustainable product development, a new perspective for approaching sustainability has been advocated, challenging designers and engineers to aim beyond ‘reducing unsustainability’. Several design strategies – including Biomimicry and Cradle to Cradle – have been suggested for developing truly sustainable, or ‘beneficial’, products. But do these strategies help in developing such products, and how to assess their ‘sustainability’? Based on a review of the objectives in nature-inspired design, we argue that assessing environmental sustainability is not straightforward. Whereas both Biomimicry and Cradle to Cradle build on the perspective of ‘achieving sustainability’, current life-cycle assessment-based tools are geared towards reducing current impacts. As a consequence, existing tools are insufficiently equipped for the purpose of the assessment: they do not cover some of the main results that nature-inspired design is set out to accomplish. To be able to include these results, we propose two new constituents to current life-cycle-based product assessment: assessing against conditions of sustainability and assessing ‘achievement’, the extent to which these conditions of sustainability have been achieved. Furthermore, the product context needs to be included for assessing beneficial impacts. This article discusses how these constituents can contribute to an assessment tool that enables designers and engineers to assess the development of environmentally sustainable solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号