首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   23篇
  国内免费   41篇
安全科学   38篇
废物处理   5篇
环保管理   19篇
综合类   80篇
基础理论   6篇
污染及防治   61篇
评价与监测   11篇
社会与环境   3篇
灾害及防治   15篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   8篇
  2020年   5篇
  2019年   10篇
  2018年   6篇
  2017年   6篇
  2016年   4篇
  2015年   9篇
  2014年   11篇
  2013年   6篇
  2012年   25篇
  2011年   11篇
  2010年   8篇
  2009年   16篇
  2008年   9篇
  2007年   7篇
  2006年   10篇
  2005年   15篇
  2004年   15篇
  2003年   11篇
  2002年   6篇
  2001年   11篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1982年   1篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
101.
BACKGROUND, AIM AND SCOPE: For decades, very large areas of former military sites have been contaminated diffusely with the persistent nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). The recalcitrance of the environmental hazard TNT is to a great extent due to its particulate soil existence, which leads to slow but continuous leaching processes. Although improper handling during the manufacture of TNT seems to be a problem of the past in developed countries, environmental deposition of TNT and other explosives is still going on unfortunately, resulting from thousands of unexploded ordnance or low order explosions at munitions test areas and at current battlefields. OBJECTIVE: Sustainable phytoremediation strategies for explosives in Germany, which intend to use trees to decontaminate soil and groundwater ('dendroremediation'), have to consider that most of the former German military sites are already covered with woodlands, mainly with conifer stands. Therefore, parallel investigation of the remediation potential is necessary for both of the selected hybrids of fast growing broadleaf trees, which are waiting for planting and forest conifers, which have already proven for decades that they are able to grow on explosive contaminated sites. MAIN FEATURES: A short literature review is given regarding phytoremediation of TNT with herbaceous plants and some general aspects of dendroremediation are discussed. Furthermore, an overview of our TNT-dendroremediation research network is introduced, which has the strategic goal to make dendroremediation more calculable for a series of potent trees for site-adapted in situ application and for the assessment of tree remediation potentials in natural attenuation processes. RESULTS AND DISCUSSION: Some of our methods, results and conclusions yet unpublished are presented. For a preliminary calculation of area-related annual TNT dendroremediation potential of five-year-old trees, the following values were assessed: Salix EW-13 6.0, Salix EW-20 8.5, Populus ZP-007 4.2, Betula pendula 5.2, Picea abies 1.9 and Pinus sylvestris 0.8 g m(-2) a(-1). For a 45-year-old spruce forest, an annual natural attenuation potential of 4.2 g TNT m(-2) a(-1) was found. CONCLUSION, RECOMMENDATIONS AND PERSPECTIVE: Our main results deliver quantitative proposals for dendroremediation strategies in situ and provide decision aids. Also aspects of growth of raw materials for energy production are considered. Our dendroremediation research concept for TNT and its congeners can be easily completed for other trees of interest and it can also be applied to herbaceous plants. Knowing the current bottlenecks of phytoremediation and considering the known environmental behaviour of other contaminants, elements of our methodological approach may be easily adapted to those pollutant groups, e.g. for pesticides, pharmaceuticals, PAHs, chlorinated recalcitrants and, with some restrictions, to inorganics and to multiple contaminations. Our dynamical dendrotolerance test systems will help to predict tree growth on polluted areas. To provide some light into the black box of TNT dendroremediation, experimental data regarding the uptake, distribution and degradation of [14C]-TNT in mature tree tissues will be reported in the second part of this publication.  相似文献   
102.
The natural attenuation of polyaromatic hydrocarbons (PAHs) in the vadose zone of a naturally revegetated former industrial sludge basin (0.45 ha) was examined. This was accomplished by comparing the concentration of 16 PAH contaminants present in sludge collected below the root zone of plants with contaminants present at 3 shallower depths within the root zone. Chemical analysis of 240 samples from 60 cores showed the average concentration of total and individual PAHs in the 0-30 cm, 30-60 cm, and bottom of the root zone strata were approximately 10, 20, and 50%, respectively, of the 16, 800 ppm average total PAH concentration in deep non-rooted sludge. Statistically significant differences in average PAH concentrations were observed between each strata studied and the non-rooted sludge except for the concentrations of acenaphthene and chrysene present at the bottom of the root zone in comparison to sludge values. The rooting depth of the vegetation growing in the basin was dependent on both vegetation type and plant age. Average rooting depths for trees, forbs (herbaceous non-grasses), and grasses were 90, 60, and 50 cm, respectively. The deepest root systems observed (100-120 cm) were associated with the oldest (12-14 year-old) mulberry trees. Examination of root systems and PAH concentrations at numerous locations and depths within the basin indicated that plant roots and their microbially active rhizospheres fostered PAH disappearance; including water insoluble, low volatility compounds, i.e. benzo(a)pyrene and benzo(ghi)perylene. The reduced concentration of PAHs in the upper strata of this revegetated former sludge basin indicated that natural attenuation had occurred. This observation supports the concept that through appropriate planting and management practices (phytoremediation) it will be possible to accelerate, maximize, and sustain natural processes, whereby even the most recalcitrant PAH contaminants (i.e. benzo(a)pyrene) can be remediated over time.  相似文献   
103.
Natural attenuation of the chiral pesticide mecoprop [2-(2-methyl-4-chlorophenoxy)propionic acid] has been studied by determining changes in its enantiomeric fraction in different redox environments down gradient of a landfill in the Lincolnshire Limestone. Previous studies have shown that mecoprop degrades predominantly aerobically and that differences in the biological behaviour of the two enantiomers will change their relative proportions during biodegradation. Originally deposited as a racemic mixture, there has been no change in the enantiomeric fraction in the most polluted part of the landfill plume where conditions are sulphate reducing/methanogenic. In the nitrate-reducing zone, the proportion of (S)-mecoprop increases, suggesting preferential degradation of (R)-mecoprop; while in the aerobic zone, the proportion of (R)-mecoprop increases, suggesting faster degradation of (S)-mecoprop. Mecoprop persistence in the confined Lincolnshire Limestone further downdip is explained by inhibition of degradation in sulphate-reducing conditions, which develop naturally. Laboratory microcosm experiments using up to 10 mg l(-1) of mecoprop confirm these inferences and show that under aerobic conditions, (S)-mecoprop and (R)-mecoprop degrade with zero-order kinetics at rates of 1.90 and 1.32 mg l(-1) day(-1), respectively. Under nitrate-reducing conditions (S)-mecoprop does not degrade, but (R)-mecoprop degrades with zero-order kinetics at 0.65 mg l(-1) day(-1) to produce a stoichiometric equivalent amount of 4-chloro-2-methylphenol. This metabolite only degrades when the (R)-mecoprop has disappeared. The addition of nitrate to a dormant iron-reducing microcosm devoid of nitrate stimulated anaerobic degradation of (R)-mecoprop after a lag period of 21 days. There was no evidence for enantiomeric inversion. The study demonstrates the sensitivity of changes in enantiomeric fraction for detecting natural attenuation, and reveals subtle differences in mecoprop degradation in different redox environments within the Lincolnshire Limestone aquifer.  相似文献   
104.
ABSTRACT: A new type of empirical model described here enables real time assessment of impacts caused by excessive water cloudiness as a function of (a) reduced visual clarity (excessive cloudiness) and (b) duration of exposure to cloudy conditions, in fisheries or fish life stages adapted to life in clear water ecosystems. This model takes the familiar form used in earlier suspended sediment dose effect models where z is severity of ill effect (SEV), x is duration of exposure (h), y is black disk sighting range (y BD, m)—a measure of water clarity, a is the intercept, and b and c are slope coefficients. As calibrated in this study the model is Severity of ill effect is ranked on a 15‐step scale that ranges from 0 to 14, where zero represents nil effect and 14 represents 100 percent mortality. This model, based on peer consultation and limited meta analysis of peer reviewed reports, accomplishes the following: (a) identifies the threshold of the onset of ill effects among clear water fishes; (b) postulates the rate at which serious ill effects are likely to escalate as a function of reduced visual clarity and persistence; (c) provides a context (the “visual clarity” matrix, with its cell coordinates) to share and compare information about impacts as a function of visual clarity “climate” (d) demonstrates changes in predator prey interactions at exposures greater than and less than the threshold of direct ill effects; (e) calibrates trout reactive distance (cm) as function of water clarity in the form where y represents reactive distance (cm) and x represents visual clarity (black disk sighting range, cm), and where a and b are intercept and slope respectively, such that (f) identifies black disk sighting range, in meters, and its reciprocal, beam attenuation, as preferred monitoring variables; and (g) provides two additional optical quality variables (Secchi disk extinction distance and turbidity) which, suitably calibrated as they have been in this study, expand the range of monitoring options in situations in which the preferred technology—beam attenuation equipment or black disk sighting equipment—is unavailable or impractical to use. This new model demonstrates the efficacy of peer collaboration and defines new research horizons for its refinement.  相似文献   
105.
Groundwater contamination was characterised using a methodology which combines shallow groundwater geochemistry data from 17 piezometers over a 2 yr period in a statistical framework and hydrogeological techniques. Nitrate–N (NO3-N) contaminant mass flux was calculated across three control planes (rows of piezometers) in six isolated plots. Results showed natural attenuation occurs on site although the method does not directly differentiate between dilution and denitrification. It was further investigated whether NO3-N concentration in shallow groundwater (<5 m below ground level) generated from an agricultural point source on a 4.2 ha site on a beef farm in SE Ireland could be predicted from saturated hydraulic conductivity (Ksat) measurements, ground elevation (m Above Ordnance Datum), elevation of groundwater sampling (screen opening interval) (m AOD) and distance from a dirty water point pollution source. Tobit regression, using a background concentration threshold of 2.6 mg NO3-N L−1 showed, when assessed individually in a step wise procedure, Ksat was significantly related to groundwater NO3-N concentration. Distance of the point dirty water pollution source becomes significant when included with Ksat in the model. The model relationships show areas with higher Ksat values have less time for denitrification to occur, whereas lower Ksat values allow denitrification to occur. Areas with higher permeability transport greater NO3-N fluxes to ground and surface waters. When the distribution of Cl was examined by the model, Ksat and ground elevation had the most explanatory power but Ksat was not significant pointing to dilution having an effect. Areas with low NO3 concentration and unaffected Cl concentration points to denitrification, low NO3 concentration and low Cl chloride concentration points to dilution and combining these findings allows areas of denitrification and dilution to be inferred. The effect of denitrification is further supported as mean groundwater NO3-N was significantly (P < 0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and N2 and was close to being significant with N2O (P = 0.08). Calculating contaminant mass flux across more than one control plane is a useful tool to monitor natural attenuation. This tool allows the identification of hot spot areas where intervention other than natural attenuation may be needed to protect receptors.  相似文献   
106.
To assess the seasonal and spatial variations and long-term trends in water optical properties in Lake Fuxian, investigations based on field work in four seasons and a long-term analysis of data from 1980 to 2014 were conducted. The results show that there was no significant variation in the euphotic depth(Z_(eu)) across the four seasons, and no significant correlations between Z_(eu) and potential influencing factors in seasons other than summer, suggesting that the water itself may be a major factor regulating the Z_(eu)in general. Nevertheless, significant differences in Z_(eu) between the north region(NR) and the south region(SR) were observed in all seasonal tests except spring. This finding relates to a higher abundance of chromophoric dissolved organic matter(CDOM) in the NR due to runoff, especially in the rainy seasons(summer and autumn).CDOM and its terrigenous component had an important impact on Z_(eu)in summer, with the highest precipitation, and impacts from suspended solids and non-algal particles were also found in the NR in summer. The Secchi disk depth in the lake decreased clearly over the years,with significantly negative correlations with the increasing permanganate index and air temperature, implying that organic contaminants(CDOM and/or phytoplankton) are important regulators of water transparency. We estimate that the combined effects of climate warming and changes in land use and land cover are also indirect regulating factors. These findings should be considered in the protection of Lake Fuxian, owing to the importance of light penetration in aquatic ecosystems.  相似文献   
107.
Determining the effectiveness of impulse noise attenuation with hearing protection devices (HPDs) is an important part of their selection. Measuring impulse noise parameters under an HPD would involve exposing subjects to impulses with a high peak sound pressure level. This paper presents a computational method of determining impulse noise parameters under the cups of earmuffs. Calculations are done using the transfer function of earmuffs, determined with Shaw’s electrical equivalent of an HPD, taking into account the design parameters of earmuffs. The developed method was used for calculations in the presence of impulse noise generated by gunshots. To verify the computational method, the results of these calculations were compared with the results of measurements.  相似文献   
108.
主要介绍了含MTBE废水处理的工艺进展以及一些新方法、技术在实验以及生产实践中的应用 ,如氧化、气提、吸收、降解和自然衰减等 ,同时对各种方法的优缺点进行了评述 ,对未来的工艺进步做了展望  相似文献   
109.
Abstract: Recent national concerns regarding the environmental occurrence of emerging contaminants (ECs) have catalyzed a series of recent studies. Many ECs are released into the environment through discharges from wastewater treatment plants (WWTPs) and other sources. In 2005, the U.S. Geological Survey and the City of Longmont initiated an investigation of selected ECs in a 13.8‐km reach of St. Vrain Creek, Colorado. Seven sites were sampled for ECs following a Lagrangian design; sites were located upstream, downstream, and in the outfall of the Longmont WWTP, and at the mouths of two tributaries, Left Hand Creek and Boulder Creek (which is influenced by multiple WWTP outfalls). Samples for 61 ECs in 16 chemical use categories were analyzed and 36 were detected in one or more samples. Of these, 16 have known or suspected endocrine‐disrupting potential. At and downstream from the WWTP outfall, detergent metabolites, fire retardants, and steroids were detected at the highest concentrations, which commonly exceeded 1 μg/l in 2005 and 2 μg/l in 2006. Most individual ECs were measured at concentrations less than 2 μg/l. The results indicate that outfalls from WWTPs are the largest but may not be the sole source of ECs in St. Vrain Creek. In 2005, high discharge was associated with fewer EC detections, lower total EC concentrations, and smaller EC loads in St. Vrain Creek and its tributaries as compared with 2006. EC behavior differed by individual compound, and some differences between sites could be attributed to analytical variability or to other factors such as physical or chemical characteristics or distance from contributing sources. Loads of some ECs, such as diethoxynonylphenol, accumulated or attenuated depending on location, discharge, and distance downstream from the WWTP, whereas others, such as bisphenol A, were largely conservative. The extent to which ECs in St. Vrain Creek affect native fish species and macroinvertebrate communities is unknown, but recent studies have shown that fish respond to very low concentrations of ECs, and further study on the fate and transport of these contaminants in the aquatic environment is warranted.  相似文献   
110.
Laboratory batch experiments have been performed with sediment and groundwater obtained from two sites in Denmark to study the aerobic biodegradation of vinyl chloride (VC) and cis-1,2-dichloroethylene (c-1,2-DCE) to assess the natural aerobic biodegradation potential at two sites. The experiments revealed that VC was degraded to below the detection limit within 204 and 57 days at the two sites. c-1,2-DCE was also degraded in the experiments but not completely. At the two sites 50% and 35% was removed by the end of the experimental period of 204 and 274 days. The removal of c-1,2-DCE seems to occur concomitantly with VC indicating that the biodegradation of c-1,2-DCE may depend on the biodegradation of VC. However, in both cases natural groundwater was mixed with sediment and consequently there may be other compounds (e.g. ammonium, natural organic compound etc.) that serves as primary substrates for the co-metabolic biodegradation of c-1,2-DCE. At one of the sites methane was supplied to try to enhance the biodegradation of VC and c-1,2-DCE. That was successful since the time for complete biodegradation of VC decreased from 204 days in the absence of methane to 84 days in the presence of methane. For c-1,2-DCE the amount that was biodegraded after 204 days increased from 50% to 90% as a result of the addition of methane. It seems like a potential for natural biodegradation exists at least for VC at these two sites and also to some degree for c-1,2-DCE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号