首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   5篇
  国内免费   70篇
安全科学   3篇
废物处理   8篇
环保管理   28篇
综合类   124篇
基础理论   32篇
污染及防治   141篇
评价与监测   28篇
社会与环境   3篇
  2023年   13篇
  2022年   11篇
  2021年   11篇
  2020年   19篇
  2019年   10篇
  2018年   12篇
  2017年   6篇
  2016年   9篇
  2015年   8篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   20篇
  2010年   29篇
  2009年   41篇
  2008年   34篇
  2007年   25篇
  2006年   11篇
  2005年   13篇
  2004年   7篇
  2003年   11篇
  2002年   5篇
  2001年   13篇
  2000年   6篇
  1999年   9篇
  1998年   8篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
排序方式: 共有367条查询结果,搜索用时 31 毫秒
111.
Trifolium repens and Lolium perenne were exposed as both monocultures and two-species mixtures to an episodic rural ozone regime in large, well-watered containers within solardomes for 12 weeks. There were reductions in biomass for T. repens, but not L. perenne, and the proportion of T. repens decreased in ozone-exposed mixtures compared to the control. In addition, leaf biomass of T. repens was maintained at the expense of biomass partitioning to the stolons. The decreased growth corresponded with decreased photosynthetic capacity for T. repens, however, by the end of the exposure there was also decreased photosynthetic capacity of L. perenne, a species previously considered insensitive to ozone. The observed decreases in photosynthetic efficiency and capacity in elevated ozone indicate that the ability of such ubiquitous vegetation to act as a sink for atmospheric carbon may be reduced in future climates.  相似文献   
112.
Wuhan Tianhe International Airport (WUH) was suspended to contain the spread of COVID-19, while Shanghai Hongqiao International Airport (SHA) saw a tremendous flight reduction. Closure of a major international airport is extremely rare and thus represents a unique opportunity to straightforwardly observe the impact of airport emissions on local air quality. In this study, a series of statistical tools were applied to analyze the variations in air pollutant levels in the vicinity of WUH and SHA. The results of bivariate polar plots show that airport SHA and WUH are a major source of nitrogen oxides. NOx, NO2 and NO diminished by 55.8%, 44.1%, 76.9%, and 40.4%, 33.3% and 59.4% during the COVID-19 lockdown compared to those in the same period of 2018 and 2019, under a reduction in aircraft activities by 58.6% and 61.4%. The concentration of NO2, SO2 and PM2.5 decreased by 77.3%, 8.2%, 29.5%, right after the closure of airport WUH on 23 January 2020. The average concentrations of NO, NO2 and NOx scatter plots at downwind of SHA after the lockdown were 78.0%, 47.9%, 57.4% and 62.3%, 34.8%, 41.8% lower than those during the same period in 2018 and 2019. However, a significant increase in O3 levels by 50.0% and 25.9% at WUH and SHA was observed, respectively. These results evidently show decreased nitrogen oxides concentrations in the airport vicinity due to reduced aircraft activities, while amplified O3 pollution due to a lower titration by NO under strong reduction in NOx emissions.  相似文献   
113.
This paper describes the development of a detailed dry deposition model for routine computation of dry deposition velocities of SO2, O3, HNO3 and fine particle SO42− across much of North America. Four different dry deposition/surface exchange sub-models have been combined with the current Canadian weather forecast model (Global Environmental Multiscale model) with a 3 h time resolution and a horizontal spatial resolution of 35 km. The present model uses the US Geological Survey North American Land Cover Characteristics data to obtain fourteen different land use and five seasonal categories. The four sub-models used are a multi-layer model for gaseous species over taller canopy land-use types, a big-leaf model for gaseous species over lower canopies (including bare soil and water) and for HNO3 under all surface types and, two different models for SO42−, one for tall canopies and the other for short canopies. All necessary parameters for each sub-model, chemical species, land-use and seasonal categories have been selected from available data libraries or from the values reported in the literature. The purpose for developing this model (referred to as the Routine Deposition Model (RDM)), when coupled with air concentration data, is to provide estimates of seasonal dry deposition, which can be combined with wet deposition to produce total deposition estimates. Model theory is discussed in this paper and model sensitivity tests and results will be presented in a companion paper.  相似文献   
114.
Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O3) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O3 fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O3 fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O3, determined from the mRNA levels of the major allergens. We conclude that O3 can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase.  相似文献   
115.
116.
采用黄磷乳浊液为吸收剂,考察了黄磷浓度、反应温度、搅拌速度、氧气浓度、烟气流量等影响因素对脱硝率的影响,并且通过添加碳酸钙进行改性,提高了体系的脱硝率。结果表明,脱硝率随黄磷浓度增大、反应温度升高、搅拌速度增大而升高;随烟气流量的增大而下降;加入碳酸钙改性可以明显提高体系脱硝效果;烟气流量400 m L/min,反应温度50℃,搅拌速度1 200 r/min,氧气浓度12%,黄磷浓度6 g/L,碳酸钙浓度2 g/L的条件下,处理NO浓度为0.06%的烟气,反应30 min体系脱硝率可达到84.76%。  相似文献   
117.
MnxCe1- xO2(x: 0.3–0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde(HCHO). At x = 0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of Ce O2 to form a solid solution. The catalytic activity was best at x = 0.5, at which the temperature of 100% removal rate is the lowest(270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5 wt.% Cu Oxinto Mn0.5Ce0.5O2. With ozone catalytic oxidation, HCHO(61 ppm) in gas stream was completely oxidized by adding 506 ppm O3 over Mn0.5Ce0.5O2 catalyst with a GHSV(gas hourly space velocity) of 10,000 hr-1at 25°C. The effect of the molar ratio of O3 to HCHO was also investigated. As O3/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O3/HCHO ratio of 8, the mineralization efficiency of HCHO to CO2 was 86.1%. At 25°C, the p-type oxide semiconductor(Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%,which significantly exceeded that of n-type oxide semiconductors such as Ti O2, which had a low ozone decomposition efficiency(9.81%). At a GHSV of 10,000 hr-1, [O3]/[HCHO] = 3 and temperature of 25°C, a high HCHO removal efficiency(≥ 81.2%) was maintained throughout the durability test of 80 hr, indicating the long-term stability of the catalyst for HCHO removal.  相似文献   
118.
综述了欧盟臭氧前体物排放及地面臭氧污染监测的现状,分析了欧盟重视地面臭氧污染监测的原因及存在的主要问题.根据欧盟在地面臭氧污染监测方面的经验和做法,提出了加强我国地面臭氧污染监测的必要性和具体建议.  相似文献   
119.
The chemical processes responsible for production of photochemical oxidants within the troposphere have been the subject of laboratory and field study throughout the last three decades. During the same period, models to simulate the atmospheric chemistry, transport and deposition of ozone (O(3)) from individual urban sources and from regions have been developed. The models differ greatly in the complexity of chemical schemes, in the underlying meteorology and in spatial and temporal resolution. Input information from land use, spatial and temporally disaggregated emission inventories and meteorology have all improved considerably in recent years and are not fully implemented in current models. The development of control strategies in both North America and Europe to close the gaps between current exceedances of environmental limits, guide values, critical levels or loads and full compliance with these limits provides the focus for policy makers and the support agencies for the research. The models represent the only method of testing a range of control options in advance of implementation. This paper describes currently applied models of photochemical oxidant production and transport at global and regional scales and their ability to simulate individual episodes as well as photochemical oxidant climatology. The success of current models in quantifying the exposure of terrestrial surfaces and the population to potentially damaging O(3) concentrations (and dose) is examined. The analysis shows the degree to which the underlying processes and their application within the models limit the quality of the model products.  相似文献   
120.
Bush bean (Phaseolus vulgaris L.) lines 'S156' (O3-sensitive)/'R123' (O3-tolerant) and cultivars 'BBL 290' (O3-sensitive)/'BBL 274' (O3-tolerant) were used to study the effects of O3 on stomatal conductance (gs), density, and aperture size on leaf and pod surfaces with the objective of establishing links between the degree of plant sensitivity to O3 and plasticity of stomatal properties in response to O3. Studies in open-top chambers (OTCs) and in continuously stirred tank reactors (CSTRs) established a clear relationship between plant developmental stages, degrees of O3 sensitivity and gs: while 'S156' had higher gs rates than 'R123' earlier in development, similar differences between 'BBL 290' and 'BBL 274' were observed at later stages. Gs rates on the abaxial leaf surfaces of 'S156' and 'BBL 290', accompanied by low leaf temperatures, were significantly higher than their O3-tolerant counterparts. Exposure to O3 in CSTRs had greater and more consistent impacts on both stomatal densities and aperture sizes of O3-sensitive cultivars. Stomatal densities were highest on the abaxial leaf surfaces of 'S156' and 'BBL 290' at higher O3 concentrations (60 ppb), but the largest aperture sizes were recorded on the adaxial leaf surfaces at moderate O3 concentrations (30 ppb). Exposure to O3 eliminated aperture size differences on the adaxial leaf surfaces between sensitive and tolerant cultivars. Regardless of sensitivity to O3 and treatment regimes, the smallest aperture sizes and highest stomatal densities were found on the abaxial leaf surface. Our studies showed that O3 has the potential to affect stomatal plasticity and confirmed the presence of different control mechanisms for stomatal development on each leaf surface. This appeared to be more evident in O3-sensitive cultivars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号