首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   10篇
  国内免费   147篇
安全科学   3篇
废物处理   3篇
综合类   159篇
基础理论   3篇
污染及防治   38篇
评价与监测   1篇
  2024年   4篇
  2023年   13篇
  2022年   14篇
  2021年   10篇
  2020年   12篇
  2019年   4篇
  2018年   9篇
  2017年   5篇
  2016年   11篇
  2015年   16篇
  2014年   18篇
  2013年   23篇
  2012年   20篇
  2011年   21篇
  2010年   11篇
  2009年   7篇
  2008年   8篇
  2006年   1篇
排序方式: 共有207条查询结果,搜索用时 46 毫秒
191.
以氯化-1-烯丙基-3-乙烯基咪唑离子液体为反应单体,偶氮二异丁腈(AIBN)为引发剂,通过自由基聚合先合成聚离子液体预聚物,并将其与聚偏氟乙烯(PVDF)、聚乙二醇(PEG)进一步共混反应,以制备聚离子液体/PVDF共混铸膜液.然后将该铸膜液在聚丙烯(PP)微孔膜表面进行涂覆成膜,以制备具有互穿网络结构的聚离子液体/PVDF荷电复合膜.采用红外光谱、扫描电镜、Zeta电位计等对复合膜表面的化学结构、形貌及荷电性能等进行分析,并采用水通量测定仪对复合膜的纯水通量及蛋白质和染料的分离性能等进行了研究.结果表明,该复合膜表面具有较好的荷电性能,且随聚离子液体的加入可以有效提高膜的亲水性和抗污染性,复合膜M2的纯水通量可达到101.7 L·m-2·h-1,该膜对溶菌酶和染料罗丹明6G的截留率分别为88.0%和94.1%,该分离膜经清水反冲洗后通量恢复率分别达到72.5%和91.8%.  相似文献   
192.
水温变化对EBPR系统除磷效果响应机制的数值模拟研究   总被引:3,自引:0,他引:3  
大量研究表明,水温变化会影响聚磷菌和聚糖菌之间的竞争关系,是造成EBPR系统除磷效果波动的重要因素.温度的逐步升高导致聚磷菌在强化生物除磷(EBPR)系统中逐渐失去优势直至系统崩溃.然而,有关如何利用物理模拟和数值模拟手段恢复升温破坏后的EBPR系统除磷效果及其响应机制的研究甚少.本文基于全耦合活性污泥数学模型(FCASM3),对EBPR系统进行数值建模和模拟试验,研究温度变化对EBPR系统的影响,旨在用模型预测及验证水温变化对EBPR系统除磷效果响应机制及适宜聚磷菌生存的极限条件,通过升温破坏及温度恢复的试验与模拟研究,进一步分析不同温度对EBPR系统中聚磷菌和聚糖菌的影响.通过对比FCASM3与国际水协的除磷代谢模型ASM2d在不同运行温度(20℃,25℃,30℃,35℃)下,对EBPR系统出水COD、PO43--P等污染物质的模拟变化趋势,结果表明FCASM3能更好地模拟EBPR系统中聚磷菌和聚糖菌的行为,且随着温度的升高,EBPR的除磷效率下降.在水温升高和恢复的过程中发现,温度升高到35℃,会导致EBPR的崩溃,短时间内不能恢复升温前的除磷效率.  相似文献   
193.
强化生物除磷系统除磷特性对水温变化响应的试验研究   总被引:1,自引:1,他引:0  
以富集聚磷菌(Phosphorus Accumulating Organisms,PAOs)的活性污泥为基础,研究了强化生物除磷(Enhanced Biological Phosphorus Removal,EBPR)系统的磷酸盐去除特性对温度升高和恢复的响应.结果表明,水温从20℃分别上升到25、30和35℃3种状态持续运行8d后,EBPR系统厌氧释磷和好氧吸磷受到明显抑制,系统磷酸盐去除率显著下降.20℃对照处理系统的磷酸盐去除率约为80.3%,而35℃的升温处理其磷酸盐去除率为0,说明此系统处于崩溃状态.当所有处理系统水温恢复到20℃运行后,25℃处理系统经过1d的恢复,磷酸盐去除率可恢复至80%,30℃处理系统经过5d的恢复,磷酸盐去除率可达80%,而35℃处理系统则无法恢复到原来的状态.此外,水温上升到25、30和35℃分别运行8d后,系统内厌氧胞内聚合物(PHA)的合成量和好氧PHA的消耗量随着反应器内水温的升高而增加.20℃对照处理系统的厌氧PHA合成量约为0.03mg·mg-1(以污泥计,下同),好氧PHA消耗量约为0.06mg·mg-1;35℃升温处理系统的厌氧PHA合成量约为0.11mg·mg-1,好氧PHA消耗量约为0.12mg·mg-1.当所有处理水温恢复到20℃运行后,升温处理的反应器内厌氧PHA合成量和好氧PHA消耗量都明显降低.  相似文献   
194.
介孔ZnO负载Fe-Cu-Zr复合催化剂用于催化燃烧降解乙酸丁酯   总被引:1,自引:1,他引:0  
采用醇热法制备了有序球状介孔ZnO负载Fe-Cu-Zr复合催化剂,应用BET、SEM、XRD、XPS等对不同物质的量比催化剂进行了表征,研究了催化降解乙酸丁酯的活性及其影响因素,并推测了降解机理.结果表明,铁铜锆复合催化剂颗粒均匀,分散性较好,孔径大部分小于50 nm,比表面积为46~68 m2·g-1.各活性成分能够共存和协同发挥作用,铁、铜、锆离子吸附在氧化锌晶胞内,粒子间量子作用力促使晶胞表面积略有变大.锆能够提高3种活性成分间的作用力,可以调节表面电子密度,促使结合能向低的方向偏移,增强催化剂的氧化还原能力.随着锆比例的增大,催化剂的活性也随之增强;随着初始浓度、空速、相对湿度的增加,乙酸丁酯降解效率均有所下降.在乙酸丁酯初始浓度为2590 mg·m-3、空速为9000 h-1的工况下,ZnO-3M催化剂降解乙酸丁酯的T50为116 ℃,T90为200 ℃,270 ℃时CO2转化率达96%,具有良好的低温催化活性和稳定性.乙酸丁酯催化氧化主要中间产物为少量的低级酸和低碳醇,最后被彻底氧化成CO2和H2O.  相似文献   
195.
氨氮对反硝化型甲烷厌氧氧化细菌的影响机理研究   总被引:1,自引:0,他引:1  
反硝化型甲烷厌氧氧化(Denitrifying Anaerobic Methane Oxidation,DAMO)是以甲烷为电子供体和唯一碳源,以硝酸盐或亚硝酸盐为电子受体的一种氧化还原反应,可用于废水脱氮,而氨氮是含氮废水中存在的主要形式.目前的研究认为主导DAMO过程的微生物主要有DAMO细菌和DAMO古菌.本文以DAMO细菌为优势菌种的系统为研究对象,通过短期和长期试验,从宏观和微观上研究了氨氮对该系统短期和长期的影响,并比较了不同pH体系下影响效果差异,揭示了相关影响机理.短期试验研究表明,氨氮对该系统的安全浓度为250 mg·L~(-1).当氨氮浓度为500 mg·L~(-1)时,对该系统的脱氮效率造成明显的抑制作用,并且随着浓度、时间的增加,氨氮对其的抑制效果增强;不同pH条件下抑制效果的差异对比发现,在碱性条件下,真正起抑制作用的是氨氮的质子化形式FA(Free Ammonia),在中性及酸性条件下,真正起抑制作用的抑制因子是离子化的NH_4~+.通过扫描电镜对系统中絮状污泥分析发现,在氨氮的短期抑制后,系统内的微生物出现了明显皱缩,丝状菌的数量增加;采用高通量测序技术分析了长期氨氮抑制后的系统,结果显示,系统内菌群结构发生较大改变,物种的多样性和丰度都大大降低.通过菌属分析认为,系统脱氮效率的降低是由于Methylomonas(甲基单胞菌属)数量的减少引起的.  相似文献   
196.
采用电晕放电与液相络合催化协同同时去除烟气中SO2和NO,电压、水流量、乙二胺合钴浓度、pH、SO2和NO初始浓度以及气流量对同时去除SO2和NO效率的影响进行了实验研究.结果表明:NO去除率随着放电电压、水流量、乙二胺合钴浓度、pH的增加而增加,而随SO2和NO初始浓度、烟气流量的增大而减小;SO2去除率也随放电电压,水流量的增加而增加,随烟气流量的增加而下降,但溶液pH,SO2和NO初始浓度和乙二胺合钴浓度对其影响很小.溶液中加入Mn2+和尿素能分别增强SO2和NO的去除效果.最佳条件为:电压25 kV、水流量80 L·h-1,乙二胺合钴浓度0.02 mol·L-1,烟气流量1.0 m3·h-1、尿素浓度0.02 mol·L-1,Mn2+浓度为0.02 mol·L-1时,NO和SO2去除率分别可达68%和94%,对应能量消耗分别为22.2 g·k Wh-1和75.2 g·k Wh-1.  相似文献   
197.
黄乐  徐颖峰  谢茜青  赵娴  冯华军 《环境科学》2020,41(4):1716-1724
高盐废水处理存在处理难度大和能耗成本高等问题.近年来发展的界面光蒸汽水处理技术以绿色、高效和低能耗等特点成为了目前水资源回收利用领域的研究热点.本研究以纤维状结构的碳化氮(h-CN)修饰石墨烯(r-GO),通过水热反应制备了新型三维多孔石墨烯复合材料(3D h-CN/r-GO),并以硝基苯和苯酚作为模拟污染物,考察了其光热蒸发处理高盐废水的性能.研究结果表明,所制备的3D h-CN/r-GO材料具备宽光谱吸收范围和多级孔道结构,并呈现出快速热响应的特点.在模拟太阳光照条件下,光蒸汽转化效率可达90.4%.并且在处理过程中可实现硝基苯和苯酚等常见挥发性污染物的吸附,其吸附容量分别为67.6 mg·g-1和57.5 mg·g-1.而且,3D h-CN/r-GO可实现长时间稳定的光热水体蒸发回收,且对污染物及盐分截留率高达98%左右,冷凝水体达到污水处理的排放标准.因此,本研究为高盐废水的低能耗和低成本处理提供了一种新的技术.  相似文献   
198.
利用废水或者废弃物培养微藻,不仅可使废弃物得到合理利用,还可为微藻培养提供廉价原料.以蛋白核小球藻(Chlorella pyrenoidosa)为研究对象,以污泥抽提液部分或全部替代SE(selenite enrichment)培养基,研究基于污泥资源化利用的微藻细胞培养方法.结果表明,当SE培养基与污泥抽提液比例为1∶9和2∶8时,相同条件下接种蛋白核小球藻培养14 d后,在波长为680 nm下其光密度分别为0.858和0.845,显著高于其它处理,当两者比例为0∶10和10∶0时,相应光密度分别为0.571和0.247.通过测定其色素和次生代谢产物含量时发现,当SE培养基与污泥抽提液比例为2∶8时,蛋白核小球藻的叶绿素、β-胡萝卜素和蛋白质含量最高.因此,剩余污泥抽提液可以部分作为培养蛋白核小球藻的良好基质,并且其培养效果明显优于其标准培养基.在本试验条件下,蛋白核小球藻培养的最佳条件是污泥抽提液比例为80%,该条件下蛋白核小球藻的生长状况较好,并且叶绿素与蛋白质含量最高.  相似文献   
199.
200.
构建了以高锰酸钾溶液为阴极电子受体,石墨棒为电极的硫化物自发电化学氧化系统.该系统可自发电化学氧化硫化物,去除率为68.15%~89.30%,其主要氧化产物为单质硫(68.10%~86.63%),且最大氧化速率可达34.76 mg·L-1·h-1,最大稳定电流密度为37.38 mA·m-2.经生物强化后,该系统的硫化物去除率高于99.80%,其主要氧化产物为硫酸盐(21.98%~74.43%)和单质硫(25.43%~78.02%),其最大氧化速率可达45.90 mg·L-1·h-1,最大稳定电流密度为36.61 mA·m-2.并通过高通量测序分别从门和属分类水平对生物强化系统阳极室内污泥细菌群落进行分析,相对丰度较高的是具有硫化物氧化功能的变形菌门和具有胞外电子传递能力的拟杆菌门.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号