首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  国内免费   3篇
环保管理   26篇
综合类   3篇
社会与环境   1篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2015年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
21.
Streams, in their natural state, are typically diverse and biologically productive environments. Streams subject to urbanization often experience degradation brought about by the cumulative effects of flow alteration, unsanitary discharge and channelization. One of the water quality parameters affected by urbanization is stream temperature. This study offers a model for predicting the impact of land use change on the temperature of non-regulated streams during extreme events. A stream temperature model was created by considering the gains and losses of thermal energy resulting from radiation, convection, conduction, evaporation and advection. A sensitivity analysis showed that out of 14 variables, shade/transmissivity of riparian vegetation, groundwater discharge, and stream width had the greatest influence on stream temperature. These same three variables are highly influenced by land use. Individual component models were developed to predict how urbanization changes stream width and baseflow discharge. Using 3-D computer modeling, a model was also developed to illustrate the effects of altering the extent and composition of riparian vegetation on streams with different orientations. By modeling these three variables as a function of urbanization, the results became inputs into the stream temperature model. The critical urban stream temperature model (CrUSTe), an aggregation of these four models, allows the prediction of stream temperature change as a result of amount, type and location of urbanization within a watershed. It has the potential to become a valuable tool for environmental managers.  相似文献   
22.
ABSTRACT: By using the exponential baseflow recession equation it is possible to estimate from a single discharge measurement the total volume of stream discharge during a baseflow period. If the discharge measurement is properly centered in the baseflow period the resulting estimate will be fairly precise, even if the baseflow recession coefficient is not known. Furthermore, based on an assumed probability distribution of the baseflow coefficient it is possible to estimate the uncertainty of the baseflow volume estimate. Estimates of baseflow volume and their uncertainty are potentially useful for estimating water budgets of lakes.  相似文献   
23.
ABSTRACT: Measured stream discharge plus calculated ground water discharge (total measured runoff) were compared with runoff calculated by the unit-runoff method for the two largest watersheds of Mirror Lake for 1981–1983. Runoff calculated by the unit-runoff method, using Hubbard Brook watershed 3 as the index watershed, was greater than the total measured runoff into Mirror Lake during periods of high flow and slightly less than the total measured runoff into Mirror Lake during periods of low flow. Annual calculated unit runoff was 17 to 37 percent greater than total measured runoff. Differences in monthly runoff are far greater, ranging from 0 to greater than 100 percent. For high flows the calculated unit runoff is about 2 times greater than total measured runoff. For low flows the northwest basin of Mirror Lake has the greatest ground water contribution compared to the other two basins. In contrast, Hubbard Brook watershed 3 has the least ground water contribution.  相似文献   
24.
ABSTRACT: A study was conducted in the Piedmont province of Maryland to determine if a relationship exists between stream quality and the extent of watershed urbanization. During the first phase of the study 27 small watersheds, having similar characteristics but varied according to land use, were investigated. Using these controlled conditions, eliminating as many interferences as possible, this first phase was intended to determine if a definite relationship did exist between the two factors. Finding that the first phase was successful the second was initiated which consisted of a comparison of biological sampling data, from other studies, with degree of watershed urbanization. The purpose of this second phase was to ascertain if the relationship between degrees of urbanization and decline in stream quality was linear as watershed area increased and in streams spread throughout the Maryland Piedmont. The principal finding of this study was that stream quality impairment is first evidenced when watershed imperviousness reaches 12%, but does not become severe until imperviousness reaches 30%.  相似文献   
25.
ABSTRACT: A study was conducted to determine the effects of surface mining and reclamation on ground-water chemistry in three saturated zones in each of three small East-Central Ohio water-sheds. The extensive disturbances of mining and reclamation: (1) caused more changes in constituent concentrations in the upper zone than in lower zones, most of which were statistically significant increases (many were “drastic”); (2) affected ground-water chemistry in lower zones - those that were not physically disturbed; (3) tended to increase the frequency of exceedance of regulated constituents in all saturated zones; and (4) affected the chemistry of surface baseflow water at the watershed outlets. Several constituents were still changing at the end of the project within all sites and zones.  相似文献   
26.
ABSTRACT: Precipitation and streamflow data from three nested subwatersheds within the Little Washita River Experimental Watershed (LWREW) in southwestern Oklahoma were used to evaluate the capabilities of the Soil and Water Assessment Tool (SWAT) to predict streamflow under varying climatic conditions. Eight years of precipitation and streamflow data were used to calibrate parameters in the model, and 15 years of data were used for model validation. SWAT was calibrated on the smallest and largest sub‐watersheds for a wetter than average period of record. The model was then validated on a third subwatershed for a range in climatic conditions that included dry, average, and wet periods. Calibration of the model involved a multistep approach. A preliminary calibration was conducted to estimate model parameters so that measured versus simulated yearly and monthly runoff were in agreement for the respective calibration periods. Model parameters were then fine tuned based on a visual inspection of daily hydrographs and flow frequency curves. Calibration on a daily basis resulted in higher baseflows and lower peak runoff rates than were obtained in the preliminary calibration. Test results show that once the model was calibrated for wet climatic conditions, it did a good job in predicting streamflow responses over wet, average, and dry climatic conditions selected for model validation. Monthly coefficients of efficiencies were 0.65, 0.86, and 0.45 for the dry, average, and wet validation periods, respectively. Results of this investigation indicate that once calibrated, SWAT is capable of providing adequate simulations for hydrologic investigations related to the impact of climate variations on water resources of the LWREW.  相似文献   
27.
ABSTRACT: Regression models to predict baseflow alkalinity from basin hydrogeology were developed and verified for headwater streams on the Laurel Hill anticline in southwestern Pennsylvania. Predicted baseflow alkalinities were then used to estimate sensitivity to acidification and presence of trout (Salvelinus fontinalis) populations for 61 headwater streams. Sensitivity classifications were verified by surveying trout populations. Geologic variables relating to the carbonate rock burial depth, extent of carbonate rock recharge areas, and length of stream channel flowing through effluent carbonate rock outcrops were much more useful in predicting baseflow alkalinity than areal extent of carbonate rocks. Baseflow alkalinity was not well related to status of trout populations on these anticlinal basins, especially on noneffluent basins where bedrock dip exceeded surface slope.  相似文献   
28.
ABSTRACT: Man-made lakes have significant impacts on the hydrologic conditions in the watershed in which they are built. This paper examines the nature of the impact upon baseflow by comparing baseflow conditions at the outlet of the lakes with those elsewhere in the watershed. Situated in the upper reaches of a small watershed, the lakes studied have only a minor effect upon the magnitude of baseflow discharge, increasing it slightly from October to January, and decreasing it from May to September. Baseflow quality is substantially affected. Natural dissolved ions, as represented by magnesium, are generally decreased in concentration and total load by the lakes. Road salt related inons are substantially increased in both concentration and total load in the baseflow. Surface runoff stored in the lakes is extremely enriched in salt in the winter, and the storage capacity of the lakes is sufficient to maintain winter salt concentrations in the baseflow near the lakes until summer. The storage effect also tends to damp out seasonal fluctuations in baseflow chloride content which are extreme in suburban watersheds. The difference in quality between the lake and non-lake baseflows and the linear distance needed for complete mixing are used as measures of the magnitude and distal extent of the lake effect on baseflow quality.  相似文献   
29.
ABSTRACT: Hydrologic models have become an indispensable tool for studying processes and water management in watersheds. A physically-based, distributed-parameter model, Basin-Scale Hydro-logic Model (BSIIM), has been developed to simulate the hydrologic response of large drainage basins. The model formulation is based on equations describing water movement both on the surface and in the subsurface. The model incorporates detailed information on climate, digital elevation, and soil moisture budget, as well as surface-water and ground-water systems. This model has been applied to the Big Darby Creek Watershed, Ohio in a 28-year simulation of rainfall-runoff processes. Unknown coefficients for controlling runoff, storativity, hydraulic conductivity, and streambed permeability are determined by a trial-and-error calibration. The performance of model calibration and predictive capability of the model was evaluated based on the correlation between simulated and observed daily stream discharges. Discrepancies between observed and simulated results exist because of limited precipitation data and simplifying assumptions related to soil, land use, and geology.  相似文献   
30.
ABSTRACT: Numerical modeling techniques are used to analyze streamflow depletion for stream‐aquifer systems with baseflow. The analyses calculated two flow components generated by a pumping well located at a given distance from a river that is hydraulically connected to an unconfined aquifer. The two components are induced stream infiltration and reduced baseflow; both contribute to total streamflow depletion. Simulation results suggest that the induced infiltration, the volume of water discharged from the stream to the aquifer, has a shorter term impact on streamflow, while the reduced baseflow curves show a longer term effect. The peak impacts of the two hydrologic processes on streamflow occur separately. The separate analysis helps in understanding the hydrologic interactions between stream and aquifer. Practically, it provides useful information about contaminant transport from stream to aquifer when water quality is a concern, and for areas where water quantity is an issue, the separate analysis offers additional information to the development of water resource management plan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号