首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1584篇
  免费   224篇
  国内免费   770篇
安全科学   237篇
废物处理   20篇
环保管理   73篇
综合类   1507篇
基础理论   325篇
污染及防治   164篇
评价与监测   200篇
社会与环境   21篇
灾害及防治   31篇
  2024年   18篇
  2023年   65篇
  2022年   97篇
  2021年   126篇
  2020年   104篇
  2019年   109篇
  2018年   92篇
  2017年   96篇
  2016年   93篇
  2015年   139篇
  2014年   226篇
  2013年   131篇
  2012年   148篇
  2011年   148篇
  2010年   134篇
  2009年   122篇
  2008年   98篇
  2007年   101篇
  2006年   76篇
  2005年   68篇
  2004年   47篇
  2003年   47篇
  2002年   33篇
  2001年   32篇
  2000年   22篇
  1999年   32篇
  1998年   27篇
  1997年   21篇
  1996年   21篇
  1995年   19篇
  1994年   24篇
  1993年   9篇
  1992年   5篇
  1991年   9篇
  1990年   15篇
  1989年   16篇
  1988年   5篇
  1987年   3篇
排序方式: 共有2578条查询结果,搜索用时 31 毫秒
21.
通过介绍光学气体成像技术的原理、泄漏检测与维修关键技术、甲烷气体泄漏检测与识别实验情况,讨论了该技术在石化生产过程中的应用发展趋势。  相似文献   
22.
废旧荧光灯管因含汞列入《国家危险废物名录》,若采取不当方式回收处置对环境存在污染隐患,由于多种原因大部分废旧荧光灯管未得到无害化处置,已经引起社会各界的关注和政府部门的重视。结合上海市的废旧荧光灯管产生及回收处置现状,针对法规、政策、机制方面存在的问题,通过研究提出源头控制、多渠道回收、建立豁免管理制度以及基金补贴机制等措施,为从根本上解决废旧灯管的回收难问题和探索社会源危险废物的管理提供了对策建议。  相似文献   
23.
本文采用便携式GC/MS仪器对大气中痕量苯系物污染物的快速定量分析进行研究。对比实验结果表明,全扫描和选择离子扫描两种扫描方式下苯系物测定结果的相对标准偏差分别在5.1%28.4%和13%28.4%和13%19%之间,回收率范围分别为46%19%之间,回收率范围分别为46%186%和60%186%和60%110%,方法检出限范围分别为2.504110%,方法检出限范围分别为2.50410.63 ug/m3和0.49410.63 ug/m3和0.4942.399 ug/m3。总体而言,选择离子扫描方式在测定结果的精密度与准确度上均优于全扫描方式。  相似文献   
24.
Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), temperatureprogrammed desorption of NH3(NH3-TPD), H2temperature-programmed reduction(H2-TPR), and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM). The results showed that the addition of Mo effectively improved the activity and stability of the Pd/Al2O3catalyst by increasing the dispersion of Pd active components, changing the partial oxidation state of palladium and increasing the oxygen species concentration on the surface of catalyst. In the case of the Pd-Mo/Al2O3catalyst,benzene conversion of 90% was obtained at temperatures as low as 190°C, which was 45°C lower than that for similar performance with the Pd/Al2O3catalyst. Moreover, the 1.0% Pd-5% Mo/Al2O3catalyst was more active than the 2.0% Pd/Al2O3catalyst. It was concluded that Pd and Mo have a synergistic effect in benzene catalytic combustion.  相似文献   
25.
The photocatalytic degradation of methylene blue(MB) over Fe-doped CaTiO3 under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction(XRD), scanning electron microscope(SEM) equipped with an energy dispersive spectrometer(EDS) system, Fourier transform infrared spectra(FT-IR), and UV-visible diffuse reflectance spectroscopy(DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO3 in the visible light region. The Fe-doped CaTiO3 exhibited higher photocatalytic activity than CaTiO3 for the degradation of MB.However, the photocatalytic activity of the Fe-doped CaTiO3 was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO3 prepared at500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB(10 ppm)under UV-visible light for 180 min.  相似文献   
26.
Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon(AC) for H2 S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H2 S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N2 adsorption, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N2-H2S-H2-CO-Hg atmosphere(simulated coal gas) was higher than that in N2-H2S-Hg and N2-Hg atmospheres, which showed that H2 and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N2-H2S-Hg and N2-Hg atmospheres.  相似文献   
27.
Removal of noxious dyes is gaining public and technological attention. Herein grafting polymerization was employed to produce a novel adsorbent using acrylic acid and carboxymethyl cellulose for dye removal. Scanning electron microscopy and Fourier-transform infrared spectroscopy verified the adsorbent formed under optimized reaction conditions. The removal ratio of adsorbent to Methyl Orange, Disperse Blue 2BLN and malachite green chloride reached to 84.2%, 79.6% and 99.9%, respectively. The greater agreement between the calculated and experimental results suggested that pseudo second-order kinetic model better represents the kinetic adsorption data. Equilibrium adsorptions of dyes were better explained by the Temkin isotherm. The results implied that this new cellulose-based absorbent had the universaiity for removal of dyes through the chemical adsorption mechanism.  相似文献   
28.
Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine- formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AG). PdC12 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electro- chemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2.6-dichloronhenol.  相似文献   
29.
Mechanisms of soil Pb immobilization by Bacillus subtilis DBM, a bacterial strain isolated from a heavy-metal-contaminated soil, were investigated. Adsorption and desorption experiments with living bacterial cells as well as dead cells revealed that both extracellular adsorption and intracellular accumulation were involved in the Pb2+removal from the liquid phase. Of the sequestered Pb(II), 8.5% was held by physical entrapment within the cell wall, 43.3% was held by ion-exchange, 9.7% was complexed with cell surface functional groups or precipitated on the cell surface, and 38.5% was intracellularly accumulated.Complexation of Pb2+with carboxyl, hydroxyl, carbonyl, amido, and phosphate groups was demonstrated by Fourier transform infrared spectroscopic analysis. Precipitates of Pb5(PO4)3OH, Pb5(PO4)3Cl and Pb10(PO4)6(OH)2that formed on the cell surface during the biosorption process were identified by X-ray diffraction analysis. Transmission electron microscopy–energy dispersive spectroscopic analysis confirmed the presence of the Pb(II)precipitates and that Pb(II) could be sequestered both extracellularly and intracellularly.Incubation with B. subtilis DBM significantly decreased the amount of the weak-acid-soluble Pb fraction in a heavy-metal-contaminated soil, resulting in a reduction in Pb bioavailability, but increased the amount of its organic-matter-bound fraction by 71%. The ability of B.subtilis DBM to reduce the bioavailability of soil Pb makes it potentially useful for bacteria-assisted phytostabilization of multi-heavy-metal-contaminated soil.  相似文献   
30.
Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorpfion kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorpfion coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号