首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   6篇
  国内免费   14篇
安全科学   7篇
废物处理   3篇
环保管理   1篇
综合类   35篇
基础理论   2篇
污染及防治   2篇
评价与监测   3篇
社会与环境   3篇
灾害及防治   2篇
  2024年   2篇
  2022年   2篇
  2021年   8篇
  2020年   2篇
  2019年   3篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2004年   3篇
  2002年   4篇
  2001年   4篇
  1999年   1篇
  1992年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有58条查询结果,搜索用时 0 毫秒
21.
总结武汉东湖水质污染问题基础上,根据湖泊和港渠联通状况设计了长江-东湖水利调度的调水线路和调水方案。基于一维港渠河道水动力水质模型和二维湖泊水动力水质模型,通过嵌套耦合求解的方式实现耦合,建立了一、二维湖泊河网水动力水质耦合模型,并利用实测数据进行了参数率定和验证。采用数值模拟的方式研究了水利调度影响下东湖水质的改善效果,结果表明:水利调度影响下东湖主要湖区水体CODMn和TN指标得以明显改善,但TP指标改善不大;东湖湾汊众多,个别湖区受到调水线路影响较小,水质改善不明显。因此水利调度可以作为东湖水体修复的重要思路。建立的数学模型也可以为东湖以及其他类似水域的水污染治理提供科学参考和依据  相似文献   
22.
介绍了区域组团式水热能综合利用的模式,区域组团式水热能综合利用以节能、降耗、减污、增效为目标,从大型企业、工业园区或镇市三个层面构建包含有工业企业、商业办公区、居民区、污水处理厂、热电厂及水体在内的多主体的水、热、能综合利用网络,形成以水为物质和能量载体的新的利用模式。以污水厂和热泵为中心的江苏恒力集团有限公司(简称恒力集团)的水热能综合利用网络,可实现集团内的废水零排放,回收的能源占恒力集团能源年消耗量的9.4%,年产生效益约4820万元。组团式水热能综合利用的思路为当前我国各行业的节能减排提供了一种新模式。  相似文献   
23.
采取热水解(70℃)-高温厌氧消化工艺处理高固含率(8%~9%)的剩余污泥(中试).该工艺利用SRT为3 d的热水解促进细胞溶解以及高温厌氧消化加快污泥消化速率,有机物去除能力较强,并获得了较好的污泥稳定化效果.当厌氧消化的SRT在20 d以上时,总VSS去除率达到42.22%以上,且VSS去除率与厌氧消化的SRT呈线性正相关,相关系数达到0.915 3.在实际应用中,推荐高温厌氧消化的SRT为25 d.当停留时间接近时,本工艺与运行良好的传统污泥厌氧消化工程(含固率3%~5%)以及采用德国技术的高固消化工程的有机物去除率和甲烷产率相当.  相似文献   
24.
餐厨垃圾与秸秆混合中温和高温厌氧消化对比   总被引:6,自引:4,他引:2  
餐厨垃圾与秸秆混合厌氧消化可有效改善两者单独厌氧消化易出现的挥发性脂肪酸积累和木质纤维素难以降解等问题,并回收生物质能.在中温(35℃)和高温(55℃)条件下,对餐厨垃圾与秸秆混合厌氧消化进行了序批式试验研究.结果表明,进料的挥发性固体(VS)浓度为3 kg·m~(-3),中温条件下,物料进料比(VS/VS)为9∶1时,单位有机负荷累积甲烷产量达到最高,为272.0 mL·g~(-1);高温条件下,进料比为5∶5时,单位有机负荷累积甲烷产量达到最高,为402.3 mL·g~(-1),分别显著高于两温度条件下餐厨垃圾单独厌氧消化的结果(中温218.6 mL·g~(-1),高温322.0 mL·g~(-1)).高温条件下物料中的碳流向甲烷的比例高于中温,且两物料混合消化促进碳流向甲烷.高温下木质纤维素总降解率为34.7%~45.8%,高于中温的12.6%~42.2%.利用高通量测序技术检测细菌与古菌的16S rRNA基因序列信息和真菌的内转录间隔(ITS)序列信息,结果表明,高温下木质纤维素降解细菌和放线菌数量明显高于中温条件,可解释高温下木质纤维素总降解率更高的原因.  相似文献   
25.
强化两相污泥高固厌氧消化系统的微生物群落   总被引:1,自引:0,他引:1  
污泥高固厌氧消化具有反应器体积小、能耗低、沼渣少等优点,但其相关机制尤其是微生物机制研究还非常有限.利用16S rRNA克隆文库技术,本研究考察了一个中试污泥高固厌氧消化系统稳定运行期的微生物群落.该中试系统采用"超高温酸化(70℃)-高温甲烷化(55℃)"的强化两相厌氧消化工艺,处理剩余活性污泥的含固率约为9%.在总的固体停留时间仅15.5 d(酸化3 d+甲烷化12.5 d)时,系统挥发性固体(volatile solid,VS)去除率为35.7%,甲烷产率(以CH4/VS去除计)为0.648 m~3·kg~(-1).两相的细菌组成差异较大:在超高温酸化相存在大量降解蛋白质/氨基酸的细菌;在高温产甲烷相则主要是降解纤维素等多糖和一些简单糖类的细菌以及长链脂肪酸降解细菌;两相中都存在降解简单糖类的细菌.两相的古菌绝大部分都属于Methanothermobacter,特别是高温产甲烷相检出的古菌100%都属于Methanothermobacter,由于仅在产甲烷相检测到沼气,这表明系统中的甲烷化过程主要通过氢营养途径进行.  相似文献   
26.
粉煤灰对采油废水中污染物质的吸附研究   总被引:8,自引:0,他引:8  
利用粉煤灰吸附去除采油废水中的石油类和COD,去除率分别为70%~80%和20%左右.以含SiO2、Al2O3和Fe2O3为主的粉煤灰吸附由复杂组分组成的采油废水中的石油类和COD的过程十分复杂,其中石油类的吸附等温线为S型,COD的吸附等温线很不规则.粉煤灰处理采油废水试验的较优操作条件搅拌时间15 min,转速300 r/min,废水pH 7.2~7.8,灰水比为1∶50.  相似文献   
27.
水力剪切力对厌氧反应器启动的影响   总被引:2,自引:1,他引:1  
吴静  周红明  姜洁 《环境科学》2010,31(2):368-372
升流式厌氧反应器以絮状污泥为种泥启动,启动过程主要关注COD去除率的提高以及污泥颗粒化的情况.污泥颗粒化过程包括"成核"以及"在核基础上成熟"2个步骤,"成核"作为颗粒化的起点尤为重要.本实验运用课题组建立的定量方法,研究了在低、中、高水力剪切力条件下的絮状污泥的成核过程.在成核过程中,污泥平均粒径(average sludge diameter,ASD)、含核率(nucleus ratio,NR)都与运行时间明显线性相关,ASD的增长速率分别为0.40、0.51和0.41μm.d-1.中等水力条件下污泥的成核速度最快,相应的剪切速率为8.28 s-1,液相和气相上升流速分别为2.66和0.24 m/h.高水力剪切力下,污泥的COD去除率增长快.同时污泥去除能力与污泥性质密切相关,在试验条件下,ASD的增长速率与COD去除率达到92%的快慢是一致的.  相似文献   
28.
厌氧反应器中絮状污泥成核过程研究   总被引:3,自引:1,他引:2  
周红明  吴静  谢宇铭  姜洁 《环境科学》2008,29(11):3114-3118
采用本课题组建立的定量方法研究了中温内循环厌氧反应器中絮状污泥的成核过程.经过85 d,污泥平均粒径由47.8 μm增至96.1 μm,成核过程基本完成.成核过程中的污泥平均粒径与成核时间线性相关性显著,相关系数达到0.989 3,污泥粒径的平均增长速率为0.58 μm/d.污泥含核率从第1 d的7.6%增长至第 85 d的36.1%.含核率的增长速率波动较大,经历了快-慢-较快3个阶段.试验过程中,污泥ECP含量与污泥含核率的增长速率明显正相关,表明ECP可能是污泥成核速率波动的原因.随成核进行污泥活性呈上升趋势,而污泥沉降性能的改善并不明显.上述定量方法以及研究结果均有利于在反应器层面了解污泥颗粒化机制.  相似文献   
29.
高温污泥厌氧消化器的启动   总被引:3,自引:3,他引:0  
吴静  赵鹏娟  田磊  史琳  施汉昌  姜艳 《环境科学》2011,32(2):520-523
污泥厌氧消化是最常用的污泥减量化和稳定化技术,高温消化污泥稳定快,但我国缺乏启动和运行经验,故进行了高温厌氧消化器处理剩余活性污泥的中试启动试验.所采用的消化器为内循环消化器,它属于升流式反应器.依赖回流沼气控制反应器的水力状况.启动采用了分步适应的策略,促进厌氧细菌适应温度、反应器构型和处理对象的变化.主要措施有:启...  相似文献   
30.
以南方某工业园区为例,研究了水污染预警溯源技术在园区企业污水排放精准监管中的应用。该技术提出污染源“水质指纹”概念,即每种污染源都有其唯一对应的水质指纹,以此进行污染排放源的识别。利用该技术监管企业排污,能准确监测到水质异常并发出预警,快速定位到嫌疑排污企业,从而可从源头解决污染问题,有效提升水环境监管工作效率。利用水质指纹识别技术,不仅可以识别企业超标排放和暗管偷排,而且可以进行污染路径溯源。案例研究表明,这项技术在水污染监管中发挥了重要作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号