首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   21篇
  国内免费   10篇
综合类   40篇
基础理论   3篇
污染及防治   5篇
评价与监测   1篇
  2023年   4篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2015年   1篇
  2014年   7篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
21.
为了定量解析环境受体中不同方向PM2.5的源贡献水平,利用“源方向解析”(source directional apportionment,SDA)法〔综合PMF(positive matrix factorization,正定矩阵因子)方法和后向轨迹模型〕对京津冀大气污染传输通道上某典型城市——菏泽市环境受体中PM2.5进行来源解析,并分析不同方向的源贡献.结果表明,菏泽市环境受体中ρ(PM2.5)变化范围为42.73~191.72 μg/m3,平均值为92.54 μg/m3.SO42-、NO3-和NH4+是菏泽市环境受体中PM2.5的主要化学组分;ρ(SO42-)、ρ(NO3-)和ρ(NH4+)的平均值分别为29.78、22.11和7.91 μg/m3,三者之和占ρ(PM2.5)的63.54%.PMF的计算结果显示,二次无机盐、机动车排放、扬尘、煤烟尘和建筑水泥尘是菏泽市环境受体中PM2.5的贡献源类,分担率分别为32.61%、22.60%、19.54%、16.25%和9.00%.利用后向轨迹模型识别出PM2.5贡献源类的4个潜在方向,分别为东南、正西、西北和正东.二次无机盐在4个方向的贡献分别为8.49%、5.01%、6.65%和12.88%;机动车排放分别为1.39%、4.44%、7.47%和8.22%;扬尘分别为4.95%、3.65%、4.12%和6.92%;煤烟尘分别为4.56%、1.93%、2.16%和7.28%;建筑水泥尘分别为2.22%、1.88%、1.27%和3.56%.研究显示,菏泽市PM2.5污染较为严重,其中二次源、机动车和扬尘源是其主要贡献源类,并且来自菏泽市东部的各源类贡献均较高.   相似文献   
22.
为研究我国中西部地区大气细颗粒物中的痕量金属区域分布、季节分布特征以及健康风险,在西安、乌鲁木齐、洛阳以及兰州四城市布点采样,利用ICP-AES(电感耦合等离子体原子发射光谱仪)测定了PM2.5中9种痕量金属(V、Cr、Cd、Mn、Ni、Cu、Zn、As、Pb)的质量分数.结果表明:在痕量金属的时空分布特征方面,各城市主导痕量金属存在差异,西安、乌鲁木齐、洛阳以及兰州的主导痕量金属为Mn、Zn、Pb、Pb,除了主导痕量金属,对于单个金属,其空间分布及季节分布都存在差异;利用分歧系数法分析了城市间颗粒物中痕量金属的组成,洛阳与其他城市颗粒物中痕量金属的CD值在0.4左右,表明洛阳与各城市颗粒物中痕量金属的组成有很大差异,而西安与乌鲁木齐、兰州两个城市的CD值几乎都小于0.2,则他们组成相似;健康风险评结果显示,颗粒物PM2.5中的痕量金属Cr对成年人有着显著的致癌和非致癌风险,而且Cd、As对4个城市居民的致癌风险是显著的,Ni对其致癌风险不显著.长期处于该研究环境,对人体健康存在一定健康威胁.此外痕量金属对人体的健康风险也具有季节性,所有痕量金属ILCR值都高于10-6,尤其是As、Cd、Cr的致癌风险超过了安全水平(10-4),尤其是Cr和As春冬季的致癌风险最高.  相似文献   
23.
将通过同步观测实验系统获得的影响降雨酸度的主要大气污染物和气象参数观测结果作为自变量,降雨酸度作为因变量,建立了基于BP神经网络模型的降雨酸度预测模型。并通过设定天津市区未来环境空气中TSP、SO_2和NO_2的浓度变化情景,运用本研究所建立的BP网络模型进行情景分析。结果表明,降雨酸度随着TSP浓度的减小而增强,随着降雨量的增大也在增强;当TSP浓度降低到几十微克每立方米水平时,天津市区所发生的降雨属于酸雨的可能性将大大增加。  相似文献   
24.
为了明确天津市区环境受体PM_(2.5)中碳组分的污染特征及来源,本研究分别于2016年2月(冬季)和8月(夏季)在天津市区设置6个采样点位同步采集PM_(2.5)样品,采用热光反射法测定样品中各个碳组分(OC1~OC4、EC1~EC3和OP(裂解碳))的含量,并计算得到OC、EC、CharEC和Soot-EC,以定性识别大气颗粒物中碳组分的来源.结果表明,夏季PM_(2.5)中OC平均浓度为(7.5±3.0)μg·m-3,占PM_(2.5)的11.7%±4.1%;而冬季相比于夏季OC的浓度和占比均有增加,分别为(13.1±7.0)μg·m-3和13.9%±2.8%.夏季和冬季EC浓度分别为(4.0±1.8)μg·m-3、(4.3±2.4)μg·m-3,占PM_(2.5)的6.1%±2.0%和4.6%±1.2%.OC与EC的相关性在夏季(r=0.83,p0.01)和冬季(r=0.96,p0.01)均显著,而冬季CharEC与OC(r=0.94,p0.01)、EC(r=0.98,p0.01)相关性明显高于夏季(OC:r=0.44,p0.01;EC:r=0.45,p0.01).PM_(2.5)中OC/EC平均值在夏季和冬季分别为1.9和3.0,估算得到夏季SOC为(2.6±1.4)μg·m-3,占OC的33.5%±13.6%;冬季为(3.5±2.5)μg·m-3,占OC的26.6%±12.0%.夏季Char-EC/Soot-EC为6.5,高于冬季(4.9),并且空间差异性显著(t检验,p0.05).正定矩阵因子模型(PMF)解析结果表明,天津市区大气PM_(2.5)中碳组分主要有4类来源:燃煤及生物质排放混合源、柴油车、汽油车、道路尘,对夏季PM_(2.5)中碳组分分担率分别为35.4%、16.4%、20.5%、14.4%;对冬季碳组分分担率分别为41.3%、15.5%、18.1%、16.3%.可见,燃煤和机动车是天津市区PM_(2.5)中碳组分的主要来源.  相似文献   
25.
北京市土壤风蚀扬尘排放因子本地化   总被引:4,自引:2,他引:2  
土壤风蚀扬尘源是细颗粒物(PM_(2.5))的来源之一,对比国内典型省市扬尘源排放清单,发现土壤风蚀扬尘源对本地扬尘源PM_(2.5)排放清单的贡献率最大差别为4个数量级.本研究改进一种土壤风蚀扬尘排放因子公式及参数值确定方法,利用遥感影像、中国土壤数据集和各区气象数据,分别获得北京市平原区植被覆盖因子(V)、土壤风蚀指数(I)和气候因子(C)空间分布,并估算土壤风蚀扬尘PM_(2.5)排放因子空间分布.结果表明:①以北京市2017年为例,发现国内学者计算的C值都存在不同程度低估,PM_(2.5)排放因子存在高估或低估;②V、I和C值都具有明显空间差异,V、I和C值平均值分别为0.63±0.09、 188±73和0.029±0.009,各区V、I和C值的最大值分别是最小值的1.5、 2.1和4.5倍;③北京市土壤风蚀扬尘PM_(2.5)排放因子呈现西北和东南方向较高的空间分布,全市平均排放因子为(0.001 8±0.000 8) t·(hm~2·a)~(-1),是最高区(西城)和最低区(平谷)数值的0.54和3.12倍,较高强度(0.6~0.8]和高强度(0.8~1.0]的标准化排放因子面积占比分别为0.72%和0.04%.  相似文献   
26.
海口市PM_(2.5)和PM_(10)来源解析   总被引:2,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   
27.
土壤扬尘是我国北方地区广泛存在的颗粒物污染来源,由于其分布广、数量大,活动水平获取困难,难以系统构建区域层面的高时空分辨率排放清单,不利于土壤扬尘源的影响评估与管控策略的制定.以2017年为基准年,通过对Landsat 8卫星的30 m分辨率遥感影像解译获取高空间分辨率的土壤扬尘源活动水平,结合空间差异化的土壤质地与气象资料,构建了京津冀地区2017年各季节高空间分辨率土壤扬尘排放清单,结合气象参数,将各季节清单结果合理分配至逐月,并与环境受体观测数据印证了结果的可靠性.结果表明:①京津冀地区土壤扬尘排放源面积比例呈冬季>春季>秋季>夏季的特征,分别为65%、59%、57%与33%.就全年平均而言,张家口市和承德市较高,分别为64%与58%;北京市和天津市较低,分别为42%与43%;其余城市差异不显著.②京津冀地区2017年土壤扬尘排放PM2.5、PM10和TSP分别为6.5×104、31.0×104和103.4×104 t.③季节尺度上,土壤扬尘排放量呈春季>冬季>秋季>夏季的特征;城市尺度上,邢台市、邯郸市、张家口市及承德市的全年排放较高,廊坊市和秦皇岛市全年排放较低.全年单位面积排放较高值出现在张家口市以及邯郸市和邢台市的西部地区.研究显示,京津冀土壤扬尘排放具有较大时空分布差异,逐月分配清单可为扬尘重点管控月份提供数据支撑,土壤扬尘清单较高的空间分辨率也为城市重点区域差异化管理提供基础.   相似文献   
28.
为分析菏泽市大气颗粒物及其水溶性离子组分特征,本研究于2015年8月期间在菏泽市6个监测点位采集环境受体PM_(10)和PM_(2.5)样品共120个,利用离子色谱法测定颗粒物中水溶性无机离子(SO■、NO~-_3、NH~+_4、Cl~-、Ca~(2+)、K~+、Na~+、Mg~(2+)、F~-),并同步收集气象参数及气态污染物质量浓度等资料.结果表明,菏泽市夏季环境受体中颗粒物质量浓度ρ(PM_(10))和ρ(PM_(2.5))分别为94.5μg·m~(-3)、55.2μg·m~(-3),稍低于国内其他城市,这与各城市经济发展、产业能源结构、气象条件等因素有关.PM_(2.5)/PM_(10)值在0.5—0.8之间,表明菏泽市夏季细颗粒物(PM_(2.5))污染较为严重.但PM_(10)和PM_(2.5)中水溶性离子质量总浓度ρ(WSIs)分别为30.5μg·m~(-3)、17.0μg·m~(-3);质量分数w(WSIs)分别为32.4%、29.6%.其中SO■、NO~-_3、NH~+_4为PM_(10)和PM_(2.5)中主要水溶性离子,3种离子浓度和分别占PM_(10)和PM_(2.5)中总离子浓度的84.3%、88.3%.SO■、NO~-_3、NH~+_4、K~+主要集中在细颗粒物(PM_(2.5))中,Ca~(2+)、Mg~(2+)则广泛存在于粗颗粒物(PM_(10))中.各采样点的PM_(10)和PM_(2.5)中,SO■、NO~-_3、NH~+_4、Ca~(2+)和Mg~(2+)浓度分布具有空间差异.离子相关性表明,NH~+_4与SO■、NO~-_3相关性均较强,3种离子主要以NH_4HSO_4、NH_4NO_3形式存在.PM_(10)和PM_(2.5)中NO~-_3/SO■值分别在0.41—0.49和0.36—0.47之间,平均值分别为0.46、0.42,表明固定源是菏泽市夏季颗粒物污染的主要污染贡献源.  相似文献   
29.
宁波市环境空气中PM10和PM2.5来源解析   总被引:21,自引:4,他引:17  
2010年在宁波3个环境受体点采集不同季节的PM10和PM2.5样品,同时采集颗粒物源类样品,分析它们的质量浓度及多种无机元素、水溶性离子和碳等组分的含量.采用OC/EC最小比值法确定了SOC(二次有机碳)对PM10和PM2.5的贡献,据此重新构建了受体化学成分谱.使用化学质量平衡模型对宁波市区的PM10和PM2.5来源进行了解析.结果表明:城市扬尘、煤烟尘、二次硫酸盐和机动车尾气尘是环境空气中PM10的主要来源,其分担率分别为23.0%、15.9%、13.3%和12.3%;对PM2.5有重要贡献的源类是城市扬尘、煤烟尘、二次硫酸盐、机动车尾气尘、二次硝酸盐和SOC,其分担率分别为19.9%、14.4%、16.9%、15.2%、9.78%和8.85%.   相似文献   
30.
杭州市大气颗粒物消光组分的粒径分布特征研究   总被引:4,自引:0,他引:4       下载免费PDF全文
2010年8月在杭州市朝晖、云栖、杭钢和下沙4个点位采集了不同粒径大气颗粒物样品,并对其主要消光组分的粒径分布特征进行了分析,包括SO42-、NO3-、NH4+、OC和EC等.同时在朝晖点位对多种气态污染物和多个气象要素进行了同步观测,以评估杭州市能见度下降的影响因素.结果表明:PM2.5、RH、SO2和NO2均与能见度呈一定负相关关系.4个监测点位颗粒物浓度变化均呈双峰型,峰值出现在0.4~0.7μm和9.0~10μm粒径段.以3.3μm为粗细颗粒的分界线,不同监测点位PM10中粗、细颗粒所占比例均等.水溶性离子消光组分的浓度大小顺序为:SO42->NH4+>NO3-. SO42-、NO3-和NH4+均显单峰结构,SO42-和NH4+的峰值出现在0.4~1.1μm的粒径段,NO3-峰值出现在5.8~10μm粒径段.OC显单峰结构,峰值出现在0.4~0.7μm粒径段;EC显双峰结构,峰值出现在0.4~0.7μm和2.1~3.3μm范围内.因而,要解决杭州的能见度问题,应减少细颗粒物,尤其是粒径<1.1μm的颗粒物的污染. NO3-、SO42-、OC和EC对杭州市颗粒物消光能力相对贡献率之比为2.2%:13.7%:29.8%:43.8%.因此要有效控制杭州市大气能见度的降低趋势, 首要的就是控制EC的主要排放源,即机动车尾气的排放.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号