首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  国内免费   10篇
环保管理   2篇
综合类   14篇
基础理论   13篇
污染及防治   4篇
  2024年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  1995年   1篇
  1990年   1篇
  1984年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
21.
许静  刘慧 《中国环境科学》2024,(4):1863-1874
以甘肃省为研究区,通过耦合GMMOP与PLUS模型预测2030年4种不同发展情景下甘肃省土地利用状况,利用InVEST模型定量评估碳储量、产水量、土壤保持和生境质量动态变化,分析不同情景下生态系统服务间的权衡协同关系.结果表明:2000~2020年,甘肃省碳储量减少0.081×108t,产水量增加3.086×1010m3,土壤保持量增加33.857×1010t,生境质量下降0.009.自然发展情景(ND)下,碳储量、产水量和生境质量均有下降,仅土壤保持量增加0.310×1010t;生态保护情景(EP)下,碳储量和土壤保持量显著提高;经济发展情景(ED)下4种生态系统服务均有降低;综合发展情景(CD)下,碳储量增加1.307×108t,其余3种服务均有下降.整体上,除白银市和嘉峪关市外,甘肃省各市州的四种生态系统服务间均呈相互增益的协同关系.4种情景下,大部分地区碳储量和产水量、碳储量和土壤保持、产水量和土壤保持间的协同关系无显著变化,而在ND、EP和CD情...  相似文献   
22.
毒草胺在环境中的降解特性研究   总被引:1,自引:0,他引:1  
毒草胺是一种被广泛应用的农药,其在环境中的降解特性备受关注。文章采用室内模拟试验方法,研究了毒草胺的光解、水解及土壤降解特性。研究结果表明,毒草胺在光强为2 370l x、紫外强度为13.5μW.cm-2的人工光源氙灯条件下,光解半衰期为2.5 h,较易光解。25℃时在pH值为5.0、7.0和9.0的缓冲水溶液中,降解半衰期分别为147.5、173.3和239.0 d;50℃时半衰期分别为15.2、27.0和42.3 d,结果显示温度对其降解速率影响较大,温度增加,水解速率明显加快,水解半衰期降低约6~10倍。该药在江西红壤中降解半衰期为46.5 d,在太湖水稻土、东北黑土中降解半衰期分别为6.4和7.9 d,比较容易降解,主要为微生物降解。结果表明毒草胺在水体中具有一定的稳定性,尤其在避光条件下难以降解。但在土壤中,比较容易被微生物降解。  相似文献   
23.
生产企业及周边环境中全氟化合物的污染特征   总被引:4,自引:0,他引:4  
生产企业作为全氟化合物(perfluorinated compounds,PFCs)的直接来源地,现今被认为是PFCs污染的主要来源之一,同时其对周边环境具有更加直接而重大的影响。我国对生产企业周边环境中PFCs污染特性研究的报道较缺乏,补充丰富各地生产企业周边环境的PFCs污染特征,可为PFCs点源分析和污染溯源提供依据。以湖北省孝昌县某化工有限公司为典型生产企业,采集7个采样点的水体和土壤样品,分析典型地区环境介质中PFCs的污染现状与特征。结果显示,11种目标PFCs污染物在水体中有7种、土壤中有6种不同程度地检出,环境水体中PFCs的总浓度介于4.70~40.22μg·L-1,土壤中PFCs的总浓度介于58.22~2 075.60 ng·g-1之间。全氟辛基磺酸(PFOS)为典型行业周边水体和土壤中最主要的PFCs污染物,其次是水体中的全氟己基磺酸钾(PFHx S)、全氟丁烷磺酸钾(PFBS)和土壤中的全氟辛酸(PFOA)、全氟己基磺酸钾(PFHx S)。PFCs检出浓度的大小与采样点距典型企业的距离极其相关,距离与污染物总量之间呈显著负相关性,但周边环境中PFCs的种类和构成比,不受与点源之间距离的影响。  相似文献   
24.
<正> 随着现代工业的高速发展,重金属对环境的污染已经成为全球性的严重危害。在某些局部地区,个别重金属污染的程度已为人类造成了严重的,甚至是不可医治的疾病,众所周知,发生于日本被认为是世界公害之一的“富山骨痛病”就是人们大量吸入了镉而造成的,因而治理重金属污染这项工作就显得十分重要而且迫在眉睫了。然而到目前为止,中外对此问题的研究除改革工艺及控制排放等措施外,尚无切实可行方法。因而治理重金属污染问题尚属探索阶段,对于探索性的问题,其每一解决该问题具有积极倾  相似文献   
25.
嗪吡嘧磺隆在土壤和沉积物中的降解   总被引:1,自引:0,他引:1  
采用室内模拟实验法,测定了嗪吡嘧磺隆在好氧与积水厌气(或厌氧)条件下的土壤降解和水-沉积物降解特性.研究结果表明,嗪吡嘧磺隆在好氧条件下,江西红壤、太湖水稻土、东北黑土中降解速率分别为0.041、0.008、0.004 d-1,积水厌气条件下分别为0.028、0.023、0.005 d-1,不同类型土壤中降解快慢顺序为:江西红壤太湖水稻土东北黑土,在太湖水稻土和东北黑土中积水厌气条件更有利于其降解,且土壤p H值是影响土壤中降解速率的主要因素;水-沉积物降解中,好氧条件下河流与湖泊水-沉积物系统中农药总量的降解速率分别为:0.031、0.032 d-1,厌氧条件下的降解速率分别为0.035、0.041 d-1,湖泊体系的降解速率快于河流体系,厌氧条件下降解速率快于好氧条件,且嗪吡嘧磺隆在水-沉积物体系中主要存在于水体中,系统降解速率主要受水体中的降解速率影响.可见,嗪吡嘧磺隆在中性至碱性土壤中具有较强稳定性,进入水-沉积物系统时主要分布于水体当中,可能会对水体和土壤环境造成一定的污染影响.  相似文献   
26.
为了缩短大型蚤急性毒性实验的周期,并且验证毒性实验的灵敏度和稳定性,对投加酵母提取物饲养的大型蚤的生长周期、2次产卵时间间隔、产卵数量、以及幼蚤灵敏度和稳定性进行研究,并将其应用于已知毒性物质和环境样品的毒性检测.结果表明,酵母提取物的适宜投加量为18.00~22.00 mg/L.在该浓度下饲养的大型蚤可保持较好的怀卵量,生长至成熟期和2次怀卵的时间间隔较短,幼蚤的灵敏度较好,毒性测试结果稳定.采用此方法测定的4种重金属和4种有机物的大型蚤急性毒性的24 h-EC50和48 h-LC50与已发表的实验结果比较相近,证明该方法准确、可靠.将该方法应用于城市生活污水急性毒性的测定发现,投加酵母提取物饲养的大型蚤所产幼蚤可以明显区分生活污水原水和处理后最终出水.因此,采用投加适量酵母提取物饲养大型蚤的方法可以缩短实验周期,为测定环境样品生物毒性提供方便.  相似文献   
27.
建立水中13种多溴联苯醚(Polybrominated diphenyl ethers,PBDEs)固相(solid-phase extraction,SPE)萃取-气相色谱分析方法。水样经弗罗里硅土(Florisil)固相萃取柱富集后,用2 mL正己烷和5 mL正己烷:二氯甲烷(V∶V=8∶2)进行洗脱,采用HP-5(30 m×320μm×0.25μm)毛细管柱分离,气相色谱仪(GC-uECD)检测。结果表明,在0.05、0.25、0.5μg/L3个添加水平中,13种PBDEs的平均添加回收率在67.9%~121.5%的范围内,相对标准偏差为2.5%~12.3%。其中BDE-209的平均添加回收率为67.9%~71.9%,相对标准偏差为5.2%~8.0%。BDE-209的方法检出限是1.2 ng/L;其余12种PBDEs的方法检出限是0.11~0.5 ng/L。该方法准确度较高;稳定性和回收率良好;可测定多组分PBDEs,满足环境样品中PBDEs的分析。  相似文献   
28.
运用室内模拟降解法,研究了有机肥源磺胺类抗生素(磺胺嘧啶、磺胺甲嘧啶、磺胺二甲嘧啶、磺胺二甲氧嘧啶和磺胺甲恶唑)在光照或避光条件下、不同类型土壤中的降解能力.结果表明,5种磺胺类药物在土壤-粪便混合基质中的降解规律均呈"L"型;不同磺胺在土壤中的降解性与药物自身性质相关,江西红壤中降解半衰期长短顺序为:磺胺甲恶唑磺胺二甲嘧啶磺胺嘧啶磺胺甲嘧啶磺胺二甲氧嘧啶;土壤中有机质含量越高,磺胺类药物在土壤中降解性越强,其降解速率大小为:东北黑土≈太湖水稻土江西红壤;磺胺类药物在土壤-粪便混合基质中的降解速率显著大于单一土壤,粪便的加入对磺胺类抗生素的降解性有较大促进作用,光照作用则相对影响较小.  相似文献   
29.
多重环境因子对氟胺磺隆在土壤中降解的影响   总被引:2,自引:1,他引:1  
宋宁慧  单正军  石利利  郭敏  许静  孔德洋 《环境科学》2012,33(12):4400-4405
氟胺磺隆作为普遍使用的一种磺酰脲类除草剂,已经对土壤和作物造成了危害,其环境行为受很多物理化学或生物因素的影响.为探明不同环境因素对氟胺磺隆在土壤中降解程度的影响,通过实验室内模拟培养的方法,研究了土壤微生物、不同土壤类型、水溶性有机物(dissolved organic matter,DOM)、温度、土壤含水量等因素对氟胺磺隆在土壤中降解的影响.结果表明,各种环境因子:温度、湿度、土壤微生物和土壤类型等均在不同程度上影响了氟胺磺隆的土壤降解速率.土壤微生物量、土壤有机质和DOM的增加均有利于氟胺磺隆在土壤中的降解,并且土壤pH的降低,也会促进氟胺磺隆在土壤中的降解.其中,土壤微生物是影响氟胺磺隆土壤降解的主要因素.该研究结果将为一些生物和物理化学因子调节氟胺磺隆在土壤中消散提供初步数据.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号