首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  国内免费   2篇
安全科学   6篇
环保管理   1篇
综合类   7篇
基础理论   6篇
污染及防治   3篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2014年   4篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  1993年   2篇
  1987年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
21.
通过对中国严寒地区典型城市大庆市供暖季3类建筑(办公室、教室、住宅)室内外共计110个测点长期监测,分析大庆市供暖季室内外细颗粒物关联性,并基于16S rDNA基因测序技术和BLAST源解析技术研究大庆市供暖季3类建筑室内外细颗粒物上细菌的组分及来源.研究结果表明:大庆市供暖季室内外PM2.5平均质量浓度分别为(32±22)和(45±34)μg/m3.其中办公室的平均渗透系数处于较低的状态(0.2886),教室的渗透系数处于较高的状态(0.5702),农村住宅(0.6513)比城市住宅的渗透系数略大(0.6057).不同类型建筑室内细颗粒物中的细菌组分存在一定差异,室外细颗粒物中的细菌组分根据采样地点也存在不同,但整体上厚壁菌门(Firmicuts)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和生氧光细菌(Oxyphotobacteria)是大庆市供暖季细颗粒物中的优势菌群.3类建筑室内外细颗粒物细菌来源主要为土壤、水体、人体、腐败有机物和粪便,但不同建筑类型及采样区域的细菌来源比例具有一定差异性.室内较室外人体来源所占比重大,而室外较室内土壤来源比重大.  相似文献   
22.
污泥添加园林废弃物堆肥过程参数变化及腐熟度综合评价   总被引:5,自引:0,他引:5  
为研究污泥添加园林废弃物混合堆肥过程中相关参数变化及腐熟度综合评价,选取表观指数、堆肥高温期(≥55℃)持续时间、p H值、碳氮降解率、种子发芽指数等5项评价指标,运用模糊综合评价法和灰色聚类法,综合评价了7种不同工况(添加的园林废弃物体积分别占总堆肥体积的0%、10%、20%、30%、40%、50%和60%,依次记为工况S、G1S9、G1S4、G3S7、G2S3、G1S1、G3S2)堆肥样品0~60 d的腐熟程度,为研究北京市污泥处理处置和污泥堆肥腐熟度的评价提供科学依据。结果表明,(1)堆肥过程中,温度、p H值、种子发芽指数整体呈现先增大后减小再稳定的过程,碳氮降解率呈先增大后稳定的规律。其中,工况G2S3堆肥高温期持续时间较长(16 d),p H值升高和下降速度都比较快,碳氮降解率、种子发芽指数都大于其他工况。(2)模糊综合评价法结果显示工况S和工况G1S9均为基本腐熟,而灰色聚类法评价结果均为未腐熟;两种评价方法均显示,工况G1S4、G3S7,最终达到较好腐熟;工况G2S3、G1S1、G3S2在第27天达到完全腐熟。(3)模糊综合评价法和灰色聚类法都综合考虑了各参数对堆肥腐熟度的影响,但权重计算方法不同,前者主要根据实测值确定权重,强调极值的作用,导致实测值小的指标失去评价的作用;后者主要根据评价标准值来确定权重,权重隐含在变化幅度不同的各级标准值中。综合考虑,灰色聚类法更适用于污泥添加园林废弃物堆肥腐熟度评价。综上所述,工况G2S3使污泥与园林绿化废弃物均能得到最大化利用,且能促进堆肥腐熟,取得较好的堆肥效果。  相似文献   
23.
为研究管制单位风险的动态性,提高风险评估的准确性,预防风险事故的发生,提出基于毕达哥拉斯模糊、试验与评估实验室(Decision Making Trial and Evaluation Laboratory, DEMATEL)、贝叶斯网络(Bayesian Network, BN)和模糊损失率的管制单位动态风险评估模型。首先识别管制单位风险因素;其次应用毕达哥拉斯模糊和DEMATEL模型探究风险因素之间的相互关系;再次将因素间的相互关系映射到BN,构建管制单位风险演化过程;然后确定先验概率,并以前兆数据作为输入信息,推导计算管制单位的动态风险概率;最后利用模糊损失率量化风险后果,计算管制单位的动态风险评估值。以某管制单位为例,对构建的管制单位动态风险评估模型进行了实证研究。结果表明:特情处置预案不合理等高严重后果概率持续上升的风险因素是该管制单位的风险管控的重点;t1~t5时间段该管制单位的动态风险评估值从1.035×10-2上升到1.106 3×10-2。构建的管制单位动态风险评估模型克服了管制传...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号