首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   14篇
综合类   19篇
基础理论   1篇
污染及防治   5篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2019年   11篇
  2018年   9篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
为更好的提高PVDF-g-PSSA质子交换膜的性能,将磺化氧化石墨烯(SGO)与PVDF-g-PSSA共聚物混合制得SGO/PVDF-g-PSSA复合质子交换膜.用傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)以及X射线测定仪(XRD)证实了GO的成功磺化.对复合膜进行SEM表征并考察了复合膜的主要性能,得到了最佳SGO掺加量.使用耗散型石英晶体微天平(QCM-D)研究了复合膜的抗污染性能.实验结果表明:当SGO添加量为1.0%时,复合膜的含水率达到44.34%,质子传导率为0.085S/cm,综合性能达到最佳.QCM-D实验表明,在纯水和50mmol/L PBS条件下,复合膜表面的BSA吸附量均最低,且|ΔD/ΔF|最大,说明吸附层较为疏松,复合膜具有较好的抗污染性.  相似文献   
22.
采用PET编织管作为复合膜的结构层,将PVP和氧化石墨烯(GO)分别作为制孔剂和改性剂与PVDF基材混合,通过涂覆-浸没凝胶相转化法制备得到具有亲水性的高强度PVDF/PET编织管复合膜。观察复合膜的断面结构和表面形貌,测定其纯水通量、表面基团以及接触角等性能参数,并将不同浓度GO改性复合膜应用于序批式膜生物反应器(SMBR)中。利用原子力显微镜(AFM)及自制的污染物胶体探针测定了溶解性微生物产物(SMP)与膜面之间的微观作用力,考察改性复合膜的抗污染特性。在40 d的反应器运行实验中,GO改性复合膜的清洗周期较改性前延长了20%~40%,该结果说明改性复合膜能够有效抑制膜面对污染物的吸附,且GO质量分数为0.5%时清洗周期最长。AFM测试结果显示,复合膜中GO质量分数为0.5%时,SMP与膜面之间的黏附力最小,抗污染能力最强。  相似文献   
23.
以全氟辛烷磺酸(PFOS)为目标去除物,选取牛血清蛋白(BSA)为典型蛋白质类有机物,考察了BSA及其浓度,以及BSA与无机离子共存时,离子强度、离子种类对聚酰胺纳滤膜去除水中PFOS的影响.研究发现,原液中存在BSA时,PFOS的去除率有显著提高,而且BSA浓度越高,PFOS的去除率越高;当BSA与无机离子共存时,离子强度越大,PFOS去除率越高.这可能是因为BSA不但会吸附一部分PFOS,还会造成膜污染,BSA浓度越大,膜污染越严重,膜的筛分能力越强,且膜面与PFOS之间的静电排斥力越大,从而提高了PFOS的截留率.而无机离子的存在减小了BSA分子之间及与膜面之间的静电排斥力,使BSA污染层更加厚实,进一步增强了膜的筛分能力.此外,Ca2+提高PFOS去除率的能力优于Na+.  相似文献   
24.
本论文以施氏假单胞菌N2为受试菌株,研究了N2菌对邻/间/对甲酚及其混合物的生物降解特性.结果表明,N2菌能以邻/间/对甲酚为唯一碳源和能源生长,但对3种异构体的降解速率各异.完全降解600 mg·L~(-1)的对甲酚仅需6 h,间甲酚则需24 h,但对邻甲酚的降解明显减缓;200 mg·L~(-1)邻甲酚48 h的降解率仅为11.38%.GC-MS结果分析发现,N2菌代谢甲酚途径主要为甲基氧化、芳环羟化,随后脱羧、开环裂解、降解转化至矿化,但3种甲酚的降解途径及酸性代谢产物的形成次序不一致.3种甲酚混合存在时可促进N2菌对其降解,这主要是因为混合碳源的协同作用减少了体系中因产酸过多引起的毒性,从而促进了N2菌对甲酚的降解矿化.  相似文献   
25.
微塑料对短流程膜工艺中膜污染的影响   总被引:1,自引:1,他引:0  
王博东  薛文静  吕永涛  苗瑞  马百文 《环境科学》2019,40(11):4996-5001
微塑料作为新型污染物越来越受到关注.随着微塑料在饮用水源地逐渐检出,亟需了解当前水处理工艺对其去除效能与机制.随着膜法饮用水处理技术的发展,短流程膜工艺以其占地面积小、去污效能高成为重要研究方向.因此,考察了微塑料对短流程膜工艺尤其膜污染的影响.结果表明,微塑料混凝前后,滤饼层始终是引起膜污染的关键诱因.超滤膜由于孔径小(d 0. 1μm),微塑料(d 5 mm)本身不会引起严重膜污染.然而,与铁盐混凝后,由于絮体的存在使得滤饼层相对疏松,但随着混凝剂投量增加,小粒径微塑料容易进入絮体形成的网络空间,形成致密滤饼层,严重加剧膜污染.pH 7. 0时0. 1 mmol·L~(-1)和0. 9 mmol·L~(-1)FeCl_3·6H_2O水解絮体导致的膜比通量分别为0. 82和0. 76.然而,0. 1 g小粒径微塑料(d 0. 5 mm)分别与0. 1 mmol·L~(-1)和0. 9 mmol·L~(-1)FeCl_3·6H_2O混凝后导致的膜比通量分别降低至0. 76和0. 62.此外,水环境中微塑料多呈负电.与碱性环境相比,氯化铁水解絮体在酸性环境中呈正电且粒径较小,微塑料容易被絮体吸附、捕获,进而形成相对致密滤饼层,引起严重膜污染.pH 6. 0和8. 0时,0. 1 g小粒径微塑料(d 0. 5 mm)与0. 3 mmol·L~(-1)FeCl_3·6H_2O混凝后膜比通量分别为0. 55和0. 79.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号