首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   8篇
  国内免费   34篇
安全科学   1篇
废物处理   2篇
环保管理   1篇
综合类   43篇
基础理论   5篇
污染及防治   19篇
评价与监测   2篇
  2022年   1篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   7篇
  2013年   2篇
  2012年   3篇
  2011年   10篇
  2010年   1篇
  2009年   8篇
  2008年   1篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有73条查询结果,搜索用时 18 毫秒
21.
宁波市实际道路下汽车排放特征的研究   总被引:4,自引:5,他引:4  
采用一套车载尾气测试系统,对选取的6辆代表性车辆在宁波市实际道路行驶中的瞬时排放进行测试.该车载尾气测试系统可逐秒获取测试车辆在行驶过程中的排放、油耗、速度和位置等参数.根据测试结果,研究计算了6辆测试车辆的排放因子(g·km-1)和油耗(L·100km-1),并分析了汽车行驶特征对排放和油耗的影响.研究结果表明,落后技术(化油器)车辆的CO、HC和NOx分别是新技术(欧Ⅱ)车的7.9、15 5和2.4倍;汽车的CO和HC排放因子和百公里油耗随速度的增加而降低;怠速和变速对汽车排放和油耗有显著影响,变速行驶状态下,汽车CO、HC和NOx排放因子,以及百公里油耗,分别是匀速行驶状态下的1.18~1.61、1.17~1.42、1.08~1.42和1.08~1.24倍.  相似文献   
22.
北京PM2.5浓度的变化特征及其与PM10、TSP的关系   总被引:46,自引:4,他引:46       下载免费PDF全文
在连续2年进行累积1周同步采样的基础上,对北京市城区和居住区2个采样点环境空气中PM2.5的浓度及其时间变化特征进行了分析.PM2.5周平均浓度的变化范围为37~346靏/m3,年均浓度接近或超过PM10的二级年均标准.PM2.5浓度具有明显的季节变化特征,即冬季最高,夏季最低.2个采样点PM2.5浓度的周变化与季节变化均相似.PM2.5与PM10、TSP的比值均在冬季最高,春季最低,反映采暖燃烧源对细颗粒物的贡献较大,而沙尘天气对粗颗粒物的贡献较大;其年均值分别为55%和29%.  相似文献   
23.
电除尘器管状芒刺类电晕极电参数模拟计算   总被引:1,自引:0,他引:1       下载免费PDF全文
推导了不等线径、不等线距圆线组合电除尘器伏安特性计算关系,利用不等线径、不等线距圆线组合对管状芒刺类电晕极作了近似简化处理.采用静电场与电晕电场相叠加的办法建立了管状芒刺类电晕极电场分布的一种计算方法.与实验值对比表明,该方法的计算结果是可靠的.  相似文献   
24.
北京大气PM2.5中微量元素的浓度变化特征与来源   总被引:24,自引:7,他引:17  
为了解北京大气细粒子中微量元素的污染水平和来源,在车公庄和清华园进行了连续1年、每周1次的PM2.5采样和全样品分析.微量元素浓度的周变化大,尤以冬季为甚,相邻2周最大相差达1.6倍;但除冬季的平均浓度较高之外,其季节变化并不显著.微量元素的富集因子在春季最低,反映了频繁发生的沙尘天气的影响.Se、Br和Pb的浓度比来自于北京A层土壤中的含量要高出约1000~8000倍,表明它们主要来自于人为污染.其中Se的富集度最高,反映了北京细粒子来自于燃煤污染的特征.Pb的年均浓度(0.31μg·m-3)虽然未超过WHO的年均标准,但与洛杉矶和布里斯班相比处于较高的水平;与Br、Se的比较分析表明,燃煤可能是Pb除机动车排放之外的另一个重要来源.  相似文献   
25.
2011~2012北京大气PM2.5中重金属的污染特征与来源分析   总被引:14,自引:12,他引:2  
为研究北京PM_(2.5)中重金属污染特征,于2011年夏季~2012年夏季每3 d采集一次PM_(2.5)样品.利用电感耦合等离子体质谱(ICP-MS)分析了Li、V、Cr、Mn、Co、Cu、Zn、As、Se、Ti、Ga、Ni、Sr、Cd、In、Ba、Tl、Pb、Bi和U的浓度,选取其中Zn、Pb、Mn、Cu、As、V和Cr 7种主要重金属元素进行深入讨论.北京市PM_(2.5)中重金属Zn、Pb、Mn、Cu、As、V和Cr的平均质量浓度分别为(331.30±254.52)、(212.64±182.06)、(85.96±47.00)、(45.19±27.74)、(17.13±19.02)、(4.92±3.38)和(9.04±7.84)ng·m-3.采样期间秋冬季节PM_(2.5)中重金属污染较春夏季节严重,这可能与北京秋冬季节取暖导致煤燃烧增加有关.霾过程会加剧北京PM_(2.5)中主要重金属Zn、Pb、Mn、Cu、As、V和Cr的污染,霾天对重金属污染的增加作用呈现一定的季节变化特征.源分析结果表明北京大气颗粒物中重金属主要来源于扬尘(包括建筑扬尘和道路扬尘)和煤燃烧,少量来自远距离输送和其他工业来源.  相似文献   
26.
大气颗粒物水溶性重金属元素研究进展   总被引:2,自引:0,他引:2  
以As、Cd、Cr、Cu、Ni、Mn、V、Pb和Zn为研究对象,总结历史及自身研究结果,从大气颗粒物水溶性重金属的分析方法、浓度水平、化合物形态、水溶性及其影响因素等方面进行分析.结果表明,发展中国家大气颗粒物水溶性重金属浓度较高,国内水溶性Zn和As污染严重,特别是As已超过国家空气质量标准中的浓度限值;大气中Zn、Pb、Cd、As和V的浓度和水溶性都较高(37.69%—58.65%),应受到广泛关注;大气颗粒物中重金属的水溶性主要受颗粒物粒径大小、酸碱性、重金属与颗粒物结合方式、金属化合物形态和来源的影响.研究结果可以为大气重金属污染控制和人体健康影响评估的开展提供理论基础.  相似文献   
27.
北京市冬季PM2.5中水溶性重金属污染特征   总被引:6,自引:0,他引:6       下载免费PDF全文
于2011年冬季使用SASS采样器在清华大学采集PM2.5样品,并对其中重金属和水溶性重金属(As?Cd?Cr?Cu?Mn?Pb和Zn等)以及无机离子进行了分析.结果表明,采样期间水溶性重金属浓度较高,As?Cd?Cr?Cu?Mn?Pb和Zn平均浓度依次为8.42,3.18,1.99,7.84,30.82, 49.27,412.81ng/m3.Cd和水溶性As平均浓度超过《环境空气质量标准》中建议浓度限值.水溶性重金属在重污染期间易出现富集,灰霾和采暖期间As?Cd?Cr?Cu?Mn?Pb和Zn平均浓度都有增加趋势.水溶性重金属的逐日变化趋势与重金属和PM2.5有较好的一致性.水溶性重金属在重金属中比重:50%£Zn和As;20%相似文献   
28.
北京市沙尘天气中矿物单颗粒的物理化学特征   总被引:5,自引:4,他引:1  
应用场发射扫描电子显微镜和X射线能谱仪,研究了2005年4月北京市区2次典型沙尘天气PM10样品中矿物单颗粒的形貌、数量-粒度分布和化学组成.研究表明:沙尘天气样品中的矿物颗粒呈边缘锋利的不规则状;数量-粒度分布在1.0~1.5 μm出现明显的峰值.根据X射线能谱的定量数据,将721个矿物单颗粒分为7类.沙尘天气样品中的矿物颗粒主要以硅铝酸盐和石英矿物为主,并且有富Ca颗粒出现.大部分颗粒是2种或更多种矿物的内部混合物.沙尘天气富Ca颗粒占矿物单颗粒总数的5.9%,主要以CaCO3以及硅铝酸盐或石英的混合物的形式存在;非沙尘天气样品中富Ca颗粒含量高达14.5%,其中约有一半来自人为源排放.单个矿物颗粒中Ca含量以及m(Ca)/m(Al)可以用来区分外来沙尘源与本地矿物颗粒.   相似文献   
29.
基于膜吸收技术自制双层平板式膜吸收器,搭建净化低浓度甲醛和氨气污染模拟系统,考察不同膜结构参数、进气流量、吸收剂流量等因素对其净化效果的影响。结果表明,聚偏氟乙烯PVDF对低浓度甲醛和氨气的净化效率高于聚四氟乙烯PTFE。对同一材质膜,随着膜孔隙率的增大,甲醛和氨气的净化率呈上升趋势。随着进气流量的增加。甲醛和氨气的净化效率降低;而吸收剂流量对其净化效率影响不大。对于所有实验条件,平均膜孔径为0.22μm的PVDF4#在进气流量ug=120L/h时,甲醛和氨气的净化效率最高,分别达94.7%和96.3%。  相似文献   
30.
2014年北京APEC期间大气醛酮污染物的污染特征与来源分析   总被引:2,自引:2,他引:0  
于2014年11月北京APEC会议前后,调查了大气醛酮污染物的变化规律及污染特征. 结果表明甲醛、乙醛和丙酮是主要污染物,占总醛酮污染物的82.66%,特别是甲醛,约占40.12%. APEC会议期间北京采取相关措施后,总醛酮污染物浓度下降了64.10%,醛酮污染物在会议前后的变化趋势与PM2.5等污染物相似. 会议期间和会议后甲醛、乙醛、丙酮和总醛酮污染物之间(R2为0.67~0.98)的相关性较好,说明其有相同来源; 但会议前的相关性较弱,(R2-0.11~0.42和R2 0.16~0.94),说明其来源不同. 计算所得的诊断参数如C1/C2、C2/C3和OC/EC比值显示,会议前来自汽车尾气与燃煤的复合源,而会议期间和会议后燃煤排放比例增加,特别是在会议后.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号