首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   21篇
  国内免费   72篇
安全科学   8篇
废物处理   9篇
环保管理   11篇
综合类   128篇
基础理论   5篇
污染及防治   66篇
  2024年   4篇
  2022年   7篇
  2021年   14篇
  2020年   5篇
  2019年   10篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   11篇
  2014年   22篇
  2013年   16篇
  2012年   8篇
  2011年   9篇
  2010年   12篇
  2009年   10篇
  2008年   9篇
  2007年   17篇
  2006年   9篇
  2005年   22篇
  2004年   9篇
  2003年   5篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1993年   4篇
排序方式: 共有227条查询结果,搜索用时 0 毫秒
211.
文章应用共沉淀法制备了不同的金属氧化物,采用程序浸渍法分别制备了RuO_2负载型催化剂,O_2-TPD表征分析结果表明,采用La改性的复合金属氧化物Me_xO_y(Me=La、Mg、Al)为载体,制备的Ru_2O/Me_xO_y有较好的低温O_2脱附性能,同微型固定床活性变化规律吻合。实验室中试实验结果表明,在原料气组成:14(V)%N_2O+75(V)%N_2+11(V)%O_2、体积空速SV=10 000 h~(-1)、入口温度340℃的条件下,RuO_2/Me_xO_y催化剂在300 h连续实验过程中,N_2O的分解转化率≥98%。CO_2-TPD分析表明反应前后催化剂的总碱量及碱性分布基本相同;SEM分析表明,同新鲜催化剂相比,反应后催化剂的表面相对粗糙,但在实验条件下,RuO_2/Me_xO_y催化分解N_2O的活性基本不发生变化。  相似文献   
212.
针对现有污染土壤热脱附修复存在效率低、成本高的问题,文章提出了一种热脱附与机械研磨联合作用的改进型污染土壤修复系统。该系统设计了具有独特螺旋结构的双层滚筒作为热脱附器,采用钢质载热球作为辅助载热体和土壤破碎研磨工具,并在滚筒内层与土壤混合,外层为热烟气通道,使土壤受到内外双层介质热作用,从而强化污染物的脱附过程。同时,热烟气与物料在滚筒内逆流,提高了能量利用率且防止了脱附气二次冷凝。此外,系统采用低温、高温两段式热脱附工艺,充分利用余热的同时增加了系统运行的灵活性。对六六六污染土壤的中试试验结果表明,系统运行的最佳球土质量比值为1.5,相较无载热球的热脱附情况,采用本系统天然气消耗量可减少30%,综合运行成本减少15%以上,验证了系统的节能性。  相似文献   
213.
以雄黄矿区产生的雄黄尾矿渣为对象,分别开展稳定化处理技术小试及中试,研究了FeSO_4对雄黄尾矿浸出液砷(As)浓度的影响。结果表明:在小试试验中,当稳定化药剂FeSO_4添加量为20%,水添加量为150 m L/kg尾矿时,养护2 d即可降低雄黄尾矿中浸出液As浓度,达到危废填埋标准限值(20%时,雄黄尾矿中浸出液As浓度达标;养护时间延长至365 d,处理后雄黄尾矿仍达标,FeSO_4对雄黄尾矿中的As有长效稳定性。  相似文献   
214.
刘爱荣  李季  王伟  张伟贤 《环境化学》2022,(4):1278-1291
纳米零价铁材料(nanoscale zero-valent iron, nZVI)是环境领域应用最广泛的纳米材料之一,因其原材料来源丰富、反应产物环境友好,在分离/固定水中重金属方面得到了广泛的研究.实验室研究表明,nZVI能够有效去除复杂实际废水中铜、砷、铅、锌、金等多种重金属,表现出较高的去除负荷.本研究团队在国内首先研究以nZVI技术为核心,开发分离、固定重金属工业废水中重金属的针对性废水处理工艺.构建了废水处理“反应-分离-回用”式纳米零价铁反应器(nano iron reactor, NIR)装置,通过“小试—中试—工程应用”逐级科学放大,将其应用于多种重金属工业废水的处理当中.本文总结了纳米零价铁废水处理工艺,综述了NIR反应器技术处理典型重金属废水的中试和工程应用案例,为nZVI的实际环境应用以及重金属废水处理提供了理论及技术借鉴.  相似文献   
215.
针对溢油量较少或风浪较大情况下,收油机回收溢油含水率过高的问题,本文设计了准密闭结构的气浮式溢油分离装置,并以胜利油田某海上采油平台原油为研究对象,通过中试试验考察了溢油分离装置在无溶气、溶气和溶气加摇摆三种条件下,对厚度分别为1 mm、3 mm和5 mm油膜的回收效果.结果表明:不同条件下微气泡的引入均能提高溢油回收效率,特别是对厚度为1 mm薄油膜,三种条件下回收溢油的含油率分别为7.7%、94.3%和91.3%,溢油回收效率提高了约12倍,显示出该装置具有良好的油水分离效果和抗风浪能力.  相似文献   
216.
应用CANON-MBBR系统处理实际污泥厌氧消化脱水液,考察了系统的稳定运行控制策略。结果表明:稳定期间,系统出水ρ(NH4+-N)稳定低于25 mg/L,去除率>96%;出水ρ(TIN)<70 mg/L,去除率>87%。系统维持纯生物膜运行,无须进行污泥回流与菌种的补投,实现了稳定的自养脱氮过程。运行期间,考察了水量、DO及温度对系统稳定性的影响,结果表明:在进水流量为80 m3/d(为平稳期1.33倍)、ρ(DO)高达2~4 mg/L和24 ℃低温条件下系统依然保持较高的脱氮性能。高通量测序结果表明,系统优势氨氧化菌(AOB)和厌氧氨氧化菌(AnAOB)分别为Nitrosomonas和Candidatus Kuenenia,其相对丰度均值分别为6.5%和30.2%,亚硝酸盐氧化菌(NOB)的相对丰度始终低于0.1%,NOB被成功抑制。悬浮载体生物膜实现了AOB和AnAOB的高效富集,系统较低的AOB丰度限制了系统脱氮能力的进一步提升。  相似文献   
217.
采用生物滴滤塔(BTF)与光催化一体化(PCO)联用工艺应用于电子垃圾拆解现场废气处理的中试研究,研究结果表明:电子垃圾拆解现场排放的废气中含有高浓度的总悬浮颗粒物(TSP)和挥发性有机污染物(VOCs)。其中TSP的质量浓度为3792.5~7387.9μg·m-3,远高于中国环境空气质量控制标准(GB3095—2012)的二级标准(300μg·m-3);VOCs主要由芳香烃类VOCs、含氮含氧类VOCs、卤代烃类VOCs和脂肪烃类VOCs组成,总VOCs的质量浓度为(5 499.1±854.7)~(26 834.0±447.0)μg·m-3,其中芳香烃类VOCs含量最高,其质量浓度为(2369.9±359.8)~(24419.6±229.5)μg·m-3,其次是含氮含氧类VOCs和卤代烃类VOCs,分别为(1018.2±142.1)~(2144.2±167.5)和(1170.6±146.5)~(1 936.6±353.3)μg·m-3,脂肪烃类VOCs的质量浓度最低,只有(44.6±0.8)~(174.4±0.5)μg·m-3。相较单一BTF和PCO工艺,BTF-PCO联用工艺可以更为有效地去除电子垃圾拆解现场排放废气中的TSP和VOCs。研究结果表明,经过BTF-PCO处理后,出口TSP的质量浓度降低到747.4~1750.9μg·m-3,其去除率在76.3%以上,而对于VOCs来说,出口浓度下降更为明显,芳香烃类VOCs、含氮含氧类VOCs、卤代烃类VOCs和脂肪烃类VOCs的去除率分别大于或者等于97.0%、92.4%、83.4%和100%。  相似文献   
218.
以污水厂实际二级出水为处理目标,通过中试试验研究了陶粒滤料反硝化生物滤池、固定床反硝化砂滤池和连续过滤连续反冲砂滤池的特性。以甲醇作为外加碳源,3种滤池均可实现出水平均总氮小于5 mg/L。不足量投加外碳源会出现出水亚硝态氮的积累。当进水TN为15 mg/L左右时,为达到出水TN小于5 mg/L,生物滤池、固定床砂滤池和连续过滤砂滤池建议滤速分别为不大于8,5.2,6.2 m/h;滤池反硝化碳源投加比例分别为4.28,3.0,3.2 g甲醇/gTN;对应的反硝化容积负荷平均值分别为1.1,0.8,1.2 kg/(m3·d)。进水组分分析发现,有机氮不是出水总氮小于5 mg/L的限制因素。  相似文献   
219.
包裹石煤固氟燃料固氟效果的中试   总被引:3,自引:0,他引:3  
选择陕西紫阳蒿坪镇相同条件地炉16户,其中8户烧用当地高氟块状石煤、石灰、粘土和低氟无烟煤粉制备的包裹石煤燃料,8户燃烧未处理的石煤,进行了中试研究.结果表明,包裹石煤组本身煤氟与渣氟比较,固氟率平均75.0%;室内空气,与普通块石煤组比较,包裹石煤燃料组氟下降了85.7%,硫下降75.0%,烟尘下降55.3%.  相似文献   
220.
常温下HAR处理低浓度生活污水中试启动   总被引:2,自引:0,他引:2  
对有效容积为315L的复合式厌氧反应器(hybridanaerobicreactor,HAR)处理低浓度生活污水的启动情况做了研究,结果表明,HAR在常温下是可以启动的,复合式厌氧工艺在启动初期有利于厌氧污泥和有机物的积累。HAR的启动期可分为3个阶段,水温>15℃时,HAR运行34d后,反应器完成启动。水力停留时间(HRT)为6h,COD和SS去除率可达60%以上。容积负荷从0.775kgCOD/m3·d增加到2.227kgCOD/m3·d,去除效率不受影响。下部污泥床层和上部填料层的污泥特性不同,在启动期末,污泥床层有少量颗粒污泥出现。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号