首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  国内免费   4篇
安全科学   1篇
废物处理   2篇
综合类   11篇
基础理论   3篇
污染及防治   16篇
评价与监测   1篇
社会与环境   1篇
  2023年   1篇
  2022年   2篇
  2016年   1篇
  2015年   2篇
  2013年   6篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有35条查询结果,搜索用时 703 毫秒
31.
Chars were generated by pyrolyzing pine wood at temperatures between 300 °C and 700 °C for 6 h and at 500 °C for 10-300 min. Their organic content and surface acidity decreased, and BET surface area increased, with increasing pyrolytic temperature and time. The uptake of benzene and nitrobenzene increased with increasing pyrolytic temperature and time with isotherms characterized by a transition from less to more concave-downward. The isotherms with low-temperature and short-time chars were fitted to the dual Langmuir-partition model, whereas those with high-temperature chars to the dual-Langmuir model. Calculations suggest that the organic phases of chars functioned as partition media and the uptake of benzene and nitrobenzene on carbonized chars occurred first in micropores via pore-filling and later in larger pores through capillary condensation and adsorption. It is concluded that chars may be considered to consist of the partition domain, the high-energy micropores domain and the low-energy large pores domain.  相似文献   
32.
Single- and bi-solute sorption of organic compounds [1,3-dichlorbenzene (DCB), 1,3-dinitrobenzene (DNB) and 2,4-dichlorophenol (DCP)] on ground tire rubber and its chars was studied. The chars were prepared by pyrolyzing tire rubber at different temperatures (200-800 °C). Their surface area, aromaticity and hydrophobicity increase greatly with pyrolytic temperature, and the polymeric phase is partly converted into a condensed phase. The sorption of DNB and DCP increases with pyrolytic temperature and is characterized by a transition from a partition dominant to an adsorption dominant process. However, the sorption of DCB linearly decreases with the pyrolytic temperature. The enhanced adsorption of DNB and DCP on carbonized phase is primarily attributed to nonhydrophobic interactions such as π-π electron-donor-acceptor interactions and/or H bonding. The higher partition of DCB to polymeric phase is attributed to its high hydrophobicity. Competitive sorption between DCB and DCP on the tire chars is highly dependent on dissociation of the latter.  相似文献   
33.
Nitrated polycyclic aromatic hydrocarbons (NPAHs) are widespread organic pollutants that possess carcinogenic and mutagenic properties, so they may pose a risk to the environment and human health. In this study, the concentrations of 15 NPAHs and 16 polycyclic aromatic hydrocarbons (PAHs) in 30 surface water samples and 26 sediment samples were measured in 2018 from the Taige Canal, one of the main rivers flowing into Taihu Lake, China. The total NPAH concentrations in water and sediment ranged from 14.7 to 235 ng/L and 22.9 to 96.5 ng/g dw, respectively. 9-nitrophenanthrene (nd–76.3 ng/L) was the dominant compound in surface water, while 2+3-nitrofluoranthene (1.73–18.1 ng/g dw) dominated in sediment. Among PAHs, concentration ranging from 1,097 to 2,981 ng/L and 1,089 to 4,489 ng/g dw in surface water and sediment, respectively. There was a strong positive correlation between the log octanol-water partition coefficient (Kow) and log sediment-water partition coefficient due to hydrophobic interaction. The fugacity fraction value increased with the decrease of log Kow, and chrysene was transferred from water into sediment. The residual NPAHs in surface water and sediment of the Taige Canal have partial correlation. Diesel engine and coal combustion emissions were probably the principal sources of NPAHs in surface water and sediment. The results of ecological risk assessment showed that some NPAHs in water (e.g, 1-nitropyrene and 6-nitrochrysene) and sediment (e.g., 2-nitrobiphenyl, 5-nitroacenaphthene, 9-nitrophenanthrene and 2+3-nitrofluoranthene) had moderate ecological risks, which should be of concern.  相似文献   
34.
Photocatalysis has attracted worldwide attention due to its potential in solar energy conversion. As a “green” advanced oxidation technology, it has been extensively used for water disinfection and wastewater treatment. This article provides a review of the recent progress in solar energy-induced photocatalytic disinfection of bacteria, focusing on the development of highly efficient photocatalysts and their underlying mechanisms in bacterial inactivation. The photocatalysts are classified into TiO2-based and non-TiO2-based systems, as TiO2 is the most investigated photocatalyst. The synthesis methods, modification strategies, bacterial disinfection activities and mechanisms of different types of photocatalysts are reviewed in detail. Emphasis is given to the modified TiO2, including noble metal deposition, non-metal doping, dye sensitization and composite TiO2, along with typical non-TiO2-based photocatalysts for bacterial disinfection, including metal oxides, sulfides, bismuth metallates, graphene-based photocatalysts, carbon nitride-based photocatalysts and natural photocatalysts. A simple and versatile methodology by using a partition system combined with scavenging study is introduced to study the photocatalytic disinfection mechanisms in different photocatalytic systems. This review summarizes the current state of the work on photocatalytic disinfection of bacteria, and is expected to offer useful insights for the future development in the field.  相似文献   
35.
研究了1,2,4,5-四氯苯在C18膜/水相之间的分配规律。1,2,4,5-四氯苯在:25℃,80r/min条件下恒温震荡96h可达分配平衡,温度和盐度对1,2,4,5-四氯苯C18膜/水的分配过程影响很小,1,2,4,5-四氯苯C18膜/水分配平衡时间受溶液体积和容器容积的影响,但不受溶液中C18膜膜量的影响,推测脂溶性小于或接近1,2,4,5-四氯苯的有机污染物在恒温震荡条件下C18膜与水之间的分配96h可达到平衡。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号