首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   23篇
  国内免费   32篇
安全科学   17篇
废物处理   5篇
环保管理   12篇
综合类   84篇
基础理论   17篇
污染及防治   12篇
评价与监测   3篇
社会与环境   2篇
灾害及防治   3篇
  2024年   3篇
  2023年   11篇
  2022年   7篇
  2021年   7篇
  2020年   19篇
  2019年   15篇
  2018年   15篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   12篇
  2013年   4篇
  2012年   8篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   12篇
  2004年   2篇
  2003年   2篇
  2000年   2篇
  1996年   1篇
排序方式: 共有155条查询结果,搜索用时 62 毫秒
31.
从样品采集和制备、样品前处理、分析测试方法方面对固体废物监测现状进行分析,对现有分析方法标准进行梳理和总结。提出了中国固体废物监测方面存在控制标准和监测分析方法衔接不完善、部分浸出方法应用目的不明确、分析方法可比性不强或缺乏操作性、质量控制手段单一及监测技术水平不高等问题。针对存在的问题,提出梳理现有方法标准、加快标准制修订、加大对现有问题的研究力度、加强培训、提升固体废物监测能力等对策,以期推动中国固体废物监测能力的提升。  相似文献   
32.
环境空气中的醛酮类化合物是当今大气环境科学领域的研究热点.醛酮类化合物因反应活性较高、性质不稳定,导致检测较为困难.为准确测定环境空气中的醛酮类化合物,针对环境空气中质量浓度较高或活性较强的18种醛酮类化合物的采样和分析方法进行研究,并采用优化的方法于2018年5月对北京市典型城区环境空气中的醛酮类化合物进行了检测.结果表明:①与手动采样器同时同地点采样数据相比,自行制作的醛酮类化合物自动采样器能够实现连续采样,数据基本一致(R2为0.999 7),其采样流速最大不超过0.8 L/min;醛酮类化合物采样管中杂质含量最高的乙醛为0.01 μg/管,小于我国HJ 683-2014《环境空气醛、酮类化合物的测定高效液相色谱法》标准限值(0.10 μg/管).②采用所确定的二醛类化合物衍生化方法与质谱扫描条件可以成功检测乙二醛和甲基乙二醛两种二醛类化合物,建立了18种醛酮类化合物的标准曲线且标准曲线相关系数R2均大于0.995 0.③采用该优化方法得到北京市典型城区环境空气中18种醛酮类化合物质量浓度的日变化范围为17.73~88.42 μg/m3.   相似文献   
33.
中国地表水硝酸盐分布及其来源分析   总被引:7,自引:7,他引:0  
张鑫  张妍  毕直磊  山泽萱  任丽江  李琦 《环境科学》2020,41(4):1594-1606
地表水硝酸盐污染已经受到世界研究者的广泛关注,中国地表水系统硝酸盐污染情况也不容乐观.为了解中国地表水硝酸盐分布、来源和转化机制,本研究系统收集了全国7大地区的71条主要河流硝酸盐数据,分析了地表水硝酸盐的分布及污染情况,并且通过硝酸盐氮氧同位素特征值揭示了不同地区、不同流域水体硝酸盐的主要来源.结果表明,我国7.83%河流硝酸盐质量浓度超过了标准限值(45 mg·L-1).牡丹江、海河和长江入海口的硝酸盐质量浓度超过90 mg·L-1,呈现重度污染现象.中国地表水δ15N-NO3δ18O-NO3特征值范围分别为-23.5‰~26.99‰和-12.7‰~83.5‰.研究表明:东北、华中、华东地区地表水硝酸盐主要来源为生活污水,西北和华北地区地表水硝酸盐主要来源为生活污水、无机化肥和土壤有机质硝化,西南和华南地区地表水硝酸盐主要来源为无机化肥和生活污水.通过相关性分析得到中国地表水硝酸盐质量浓度与常住人口、废水排放量、农用氮肥施用折纯量和人均GDP呈正相关关系.解决污染问题和防止中国地表水进一步污染迫在眉睫,中国政府出台的新的水十条解决了之前的不足,但是控制和修复地表水污染还需要几十年的努力.西北、华北、西南和华南地区不仅要增加城市、县区污水处理厂运行规模,政府还要控制和管理农业化肥的使用量.东北、华中和华东地区需要进一步控制点源污染,减少工业废水和生活污水排放到河流.  相似文献   
34.
王诗语  孙从建  陈伟  周思捷  张鑫 《环境科学》2023,44(3):1416-1428
开都河流域是西北内陆区典型的山地绿洲系统,其水化学信息对了解区域水文过程和优化水资源配置具有重要意义.基于2020年内不同季节山区、绿洲区多种水体样品的采集及测试,分析了该区域水化学特征及其水力联系.结果表明:(1)研究区水体整体呈微碱性,pH和TDS值呈现绿洲区高、山区低的分布特征;HCO-3和Ca2+为主要的阴阳离子,区域水化学类型多为HCO-3-Ca2+型,绿洲区地下水水化学类型较之山区更复杂;区域水化学特征受岩石风化和人类活动影响较为明显.(2)河水δ18O和δD值呈现夏季贫化、春季富集的季节变化特征,而地下水为冬春贫化,秋季富集;降水和冰川水年内变化不显著;河水及地下水的δ18O和δD值则表现为绿洲区富集、山区贫化的空间分布特征.(3)研究区地表水和地下水的相互关系密切,且在夏季转化频繁;绿洲区地表水与地下水的转化特征呈显著的时空差异性.研究结果对于我国西北内陆区水资源的优化配置具有重要意义.  相似文献   
35.
张鑫 《环境教育》2011,(2):78-79
水是生命之源,虽然世界上有138亿立方米的水,占世界表面积的70%,但是淡水只有5亿立方米,能饮用淡水却只有0.14亿立方米。节约用水、科学用水,是每一个公民的责任,如果一个人一天节约一滴水,那么全世界60亿人一年就可以节省多少呢?  相似文献   
36.
化学需氧量(COD)和总有机碳(TOC)是定量表示水体受有机物污染的2个重要代表性指标。传统的COD在线监测方法在监测有机污染物方面存在一定的挑战,系统比较了COD和TOC在线监测方法在特殊水质中的应用。结果显示:TOC对难氧化有机物的氧化效率高达98%,高氯离子和无机还原性离子对TOC测量误差影响分别约为10%和7%。TOC可更直接、更准确地反映出水体受有机物污染的情况,最后对TOC指标在水质在线监测中的推广应用提出建议。  相似文献   
37.
海洋沉积物孔隙水是研究海洋环境、地质与生物地球化学问题的重要信息载体,传统岸上分析手段难以获得高保真的孔隙水地球化学参数。拉曼光谱作为一种非侵入、非破坏、同时也是无试剂消耗的测试技术,可在极端环境下进行固体、液体、气体分子原位识别,使其成为海底地球化学分析的有力工具。该研究针对孔隙水中的重要地化成分——SO42-、CH4的拉曼光谱定量分析可行性进行了实验室研究,结果显示,基于内标定法的拉曼光谱定量分析技术可以用于SO42-、CH4水溶液浓度的定量分析,并具有良好的精度和较低的检出限,可以用于原位定量分析海洋沉积物孔隙水中的甲烷与硫酸根浓度。为获取海洋沉积物孔隙水的高保真数据提供了新的技术参考。  相似文献   
38.
以污泥碳(SC)中回收的铝酸钠为铝源,在制备Al(OH)3的过程中加入表面活性剂PEG-1000(比例在0.01%~0.6%变化),考察其对Al(OH)3表面形貌和结构的影响.研究发现,当加入PEG-1000比例较小时,其空间位阻作用抑制了粒子之间的键合作用,使得Al(OH)3的沉淀效率较高、粒子尺寸较小,也能有效地阻止颗粒的团聚,SBET可以达到340 m2·g-1以上.当PEG-1000加入比例较大时,Al3+的沉淀效率逐渐降低,所得Al(OH)3粒子的尺寸变大,Al(OH)3的SBET和孔体积逐渐变小,平均孔径变大;原因是增多的PEG-1000分子会被包进Al(OH)3的结构中,限制了PEG-1000的表面交联和吸附,使空间位阻效应变差.—CH2—振动峰的出现说明PEG-1000是通过形成化学键的方式连接在Al(OH)3的表面基团上.PEG-1000的使用对于以污泥为铝源制备分散性好、尺寸较小和SBET较大的非晶态Al(OH)3具有重要作用.  相似文献   
39.
为合理选择应急物流配送中心地址,提高应急管理能力,基于地震灾害风险评价数据,通过ArcGIS平台形成Voronoi图,可视化表达地震应急准备分区方案并进行应急物流中心预选址;在考虑需求权重情况下,构建应急物流配送中心优化选址模型,通过LINGO软件编程求解得出基于震灾应急准备分区的应急物流配送中心选址方案,并以A市为例,通过与传统行政区划建设方案进行对比,验证本文选址方案的有效性。研究结果表明:本文选址优化模型综合考虑各方面因素,使服务里程总量减少31.39%,单位服务量提高30.61%,验证选址方案的配送效率与公平性。  相似文献   
40.
为解决石油污染土壤中以石油为唯一碳源的土著微生物生长缓慢的问题,研究了分别添加玉米淀粉、玉米粉、可溶性淀粉和葡萄糖4种碳源对土样细菌总量和石油烃降解率的影响。研究结果表明:玉米淀粉作为碳源时土样TN和TP的下降幅度均最大;添加玉米淀粉和玉米粉比添加可溶性淀粉和葡萄糖更有利于细菌的生长繁殖;细菌对直链烷烃化合物均具有较好的降解效果,但对较为复杂的芳香烃化合物降解效果较差。降解反应第40天时,分别添加玉米淀粉、玉米粉、可溶性淀粉和葡萄糖的石油烃降解率分别为67.25%、48.60%、46.30%和28.57%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号