首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   7篇
  国内免费   22篇
综合类   34篇
基础理论   19篇
污染及防治   3篇
社会与环境   14篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1994年   2篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
31.
不同养分和水分管理模式对土壤生态环境影响   总被引:3,自引:0,他引:3  
室内盆栽培养下 ,通过对土壤pH、Eh、有机质、Fe形态、容重和结构等主要理化性质指标的测定和分析 ,比较和研究了不同养分和水分管理模式对土壤生态环境的影响。结果表明 ,在连续淹水下 ,施用有机肥料 ,特别是厩肥 ,降低了土壤Eh ,加剧了土壤的还原状态 ,同时也使土壤无定型态铁氧化物含量上升 ,对改善土壤物理环境效果也明显削弱 ;在干湿交替下 ,有机无机肥料配施不但可提高土壤有机质 ,而且可明显改善土壤氧化还原状况和物理特性  相似文献   
32.
泥炭树脂颗粒对水溶液中十二烷基苯磺酸钠的去除   总被引:1,自引:0,他引:1  
泥炭树脂颗粒对水溶液中十二烷基苯磺酸钠 (SDBS)具有很好的去除效果。数据分析表明 ,Freundlich和 Langmuir吸附等温方程可以很好地描述这一过程。通过 L angmuir方程计算出颗粒对 SDBS的最大吸附量为 3 3 .3 3 mg·g- 1。在试验条件下 ,吸附量随着 SDBS的初始浓度增加而增加 ,当溶液的初始 p H在 4~ 8的范围时 ,颗粒对 SDBS吸附量变化很小。溶液的初始浓度对吸附速率产生明显影响 ,浓度越低吸附速率越快 ,达到吸附平衡所需的时间越短。准二级动力学模型能够很好地描述颗粒对 SDBS的吸附过程。  相似文献   
33.
尾矿吸附模拟废水中磷的初步研究   总被引:2,自引:0,他引:2  
利用尾矿为吸附剂,模拟了其对废水中磷的去除效果.结果表明,焙烧可以明显提高尾矿对模拟废水中磷的吸附,而尾矿投加量、接触时间、pH,反应温度均是影响吸附的重要因素.热活化尾矿对磷的吸附与Langmuir、 Freundlich等温方程式的拟合程度均较高,在碱性条件下,对初始质量浓度为50mg/L的模拟含磷废水,磷的去除率可达96%以上.此外,由于尾矿具有特殊的层状结构和化学活性成分,特别是热活化尾矿,对模拟废水中的磷是较好的吸附剂,可用于去除废水中磷,是尾矿作为吸附剂去除实际废水中磷的重要基础.  相似文献   
34.
改性泥炭-树脂颗粒对水溶液中酸性橙Ⅱ的吸附   总被引:2,自引:1,他引:1  
孙庆业  杨林章 《环境科学》2007,28(6):1300-1304
通过批量实验研究了改性泥炭-树脂颗粒对水溶液中酸性橙Ⅱ的吸附特性.Langmuir和Freundlich吸附等温方程被用于分析吸附等温数据,准一级动力学模型、准二级动力学模型和颗粒扩散模型被用于吸附动力学实验数据分析.结果表明,改性泥炭-树脂颗粒对水溶液中酸性橙Ⅱ的吸附过程符合Langmuir和Freundlich吸附等温方程,最大吸附量达到71.43 mg·g-1;颗粒扩散模型能够很好地描述改性泥炭-树脂颗粒对水溶液中酸性橙Ⅱ的吸附动力学过程,水溶液中染料的初始浓度、颗粒直径、颗粒量及搅拌速度对吸附速率均产生一定的影响.改性泥炭-树脂颗粒对水溶液中酸性橙Ⅱ的吸附作用主要发生在颗粒的外表面.  相似文献   
35.
专家建议加强三峡生态与环境监测和保护徐琪,马毅杰,杨林章(中国科学院南京土壤研究所南京210008)三峡工程是长江流域的一个特大型水利工程,它的建成对库区及整个长江流域的生态与环境将产生深刻而长远的影响。为了及时了解工程建设过程中及建成后全流域资源、...  相似文献   
36.
pH对几种淡水藻类生长的影响   总被引:15,自引:0,他引:15  
利用藻类批量培养试验研究了不同初始pH和不同固定pH对三种淡水蓝藻和三种淡水绿藻生长的影响。结果表明:藻类对水体pH有较强的缓冲能力,可以通过自身增殖活动改变水体的pH,因而不同初始pH对藻类生长的影响不明显,但加了pH缓冲剂固定初始pH后,藻类的生长反应很明显,适宜的pH范围各不相同,铜绿微囊藻(Microcystis aeruginosa)、水华鱼腥藻(Anabaena flos-aquae)、浮游颤藻(Oscillatoria planctonica)适宜的pH分别9.0、8.0~9.0和7.0~8.0,斜生栅藻(Scendesmus obliquus)、绿球藻(Chlorococcum sp).、雷氏衣藻(Chlamydomonas reinhardtii)适宜的pH分别为9.0~10.0、7.0~8.0和7.0。蓝藻适宜的pH并不都比绿藻的高。  相似文献   
37.
薛利红  俞映倞  杨林章 《环境科学》2011,32(4):1133-1138
研究了不同氮肥管理模式下的稻田氮素平衡特征和环境效应.在太湖主要入湖河流直湖港下游开展了农户常规施肥处理、缓控释肥处理、有机无机肥配施处理、按需施肥处理以及化肥减量优化处理5种氮肥管理模式的田间小区试验,实测了稻季的径流和淋洗氮损失,估算了氨挥发和N2O等气体损失,分析了不同氮肥处理下的环境排放量和氮素平衡特征.与农户常规施肥处理相比,其他处理在减少氮肥总投入量20%~40%的情况下产量与农户对照基本持平,氮肥利用率提高了14.5%~44%.不同氮肥管理模式下,缓控释肥处理和按需施肥处理的氮环境排放量最低,比农户施肥处理分别降低了52.8%和45.4%.在等氮量投入下,有机无机配施处理比纯化肥处理减少了环境氮排放量.农户施肥处理存在着明显的氮盈余,增加了麦季氮流失的风险,按需施肥处理略微出现氮亏缺,在一定程度上减少了麦季氮流失风险.新型缓控释肥处理和按需施肥处理能在不降低产量和效益的情况下,提高氮肥利用率,减少环境排放量,是值得在太湖流域推广的经济环保氮肥管理模式.  相似文献   
38.
载镧生物炭的优化制备及其对水体中砷的吸附   总被引:2,自引:0,他引:2  
以玉米秸秆为原材料优化制备用于吸附水体中五价砷的载镧生物炭(La-biochar),对其表面进行了系统表征,同时考察了环境条件对载镧生物炭吸附性能的影响.结果表明:相比负载前生物炭,负载后生物炭表面更粗糙,比表面积增大4.6倍,同时表面成功负载有大量镧元素.以获取对五价砷的最大吸附能力为目的,通过响应面模型获得La-biochar的优化制备条件为:物料比w(La)/w(秸秆)=9.47%,停留时间=20min,热解温度=300oC.中性和酸性环境条件有利于La-biochar对砷酸根的吸附,而碱性条件则有不利影响;较高浓度的CO32-显著降低其对砷酸根吸附,而同样浓度的Cl-和F-不会造成明显影响.  相似文献   
39.
铜绿微囊藻和斜生栅藻生长的氮营养动力学特征   总被引:9,自引:1,他引:8  
利用批量培养试验比较研究了氮限制条件下铜绿微囊藻(Microcystis aerugiuosa)和斜生栅藻(Scendesmus obliquus)对氮的生长反应,并应用Monod方程计算了2种藻的营养动力学参数(μmax和Ks). 结果表明,ρ(氮)为0~2.00 mg/L时铜绿微囊藻比增长率快速增长;ρ(氮)为0~4.00 mg/L时斜生栅藻比增长率快速增长. 铜绿微囊藻的最大比增长率(μmax)为0.23 d-1,半饱和常数(Ks)为0.14 mg/L;斜生栅藻的μmax为0.41 d-1,Ks为0.24 mg/L. 根据生长动力学参数可以预测,当氮缺乏时,铜绿微囊藻容易形成优势,当氮丰富时,斜生栅藻容易形成优势.   相似文献   
40.
太湖流域稻田湿地对低污染水中氮磷的净化效果   总被引:14,自引:0,他引:14       下载免费PDF全文
对太湖流域稻田湿地设置3种布水设计——地表漫流式、串形沟灌渗滤式和弓形沟灌渗滤式, 研究连续进水方式下3种布水设计的稻田湿地对低污染水中氮、磷的净化效果及其产量效应. 结果表明:①在水稻拔节期和灌浆期,稻田湿地对低污染水中TN和TP的去除率分别可达77%~93%和87%~96%,稻田排水中ρ(TN)均在2 mg/L以下. ②3种布水设计对TN的去除率表现为漫流式>弓形沟灌渗滤式>串形沟灌渗滤式;对TP的去除率则以弓形沟灌渗滤式最高,串形沟灌渗滤式最差,但二者间差异不显著. ③弓形沟灌渗滤处理由于沟渠占田面积比例相对比较适宜,水稻籽粒产量最高(8 520 kg/hm2),比传统的漫流型稻田湿地增产5.2%;而串形沟灌渗滤处理因其沟渠占田面积比例(约14%)较大,水稻籽粒产量最低. 研究结果证实,利用太湖流域广泛存在的稻田湿地来净化周围的低污染水方法可行且效果较好.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号