首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   3篇
  国内免费   16篇
安全科学   2篇
废物处理   1篇
综合类   21篇
基础理论   1篇
污染及防治   1篇
评价与监测   5篇
社会与环境   3篇
灾害及防治   1篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2011年   6篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1988年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
31.
交通部门是快速增长的能源消费和CO_2排放部门,其CO_2排放峰值出现的年份和峰值排放水平已成为影响我国能否实现2030年国家自主决定贡献目标的要素之一。本文将交通部门的CO_2排放进行KAYA公式展开并动态化,推导出交通部门CO_2排放峰值、能源消费量峰值和交通服务周转量峰值出现时的必要条件,以及三个峰值出现顺序的一般规律,即:交通部门CO_2排放量的峰值将最早出现,该峰值出现时交通部门能源消费的碳强度年下降率将大于交通能源消费的年增长率;交通能源消费量峰值将随后出现,届时交通服务量的能源强度年下降率将大于交通服务量的年增长率;交通部门服务量达峰将最后出现,此时单位GDP的交通服务强度的年下降率将大于GDP的年增长率,并最终实现与GDP增长脱钩。在结合我国经济发展新常态的背景下,对我国交通部门的CO_2排放、能源消费和服务量达峰进行情景分析,研究结果表明:只有综合采取燃油税和碳税等财税政策以及进一步加速燃料替代、提升交通工具能效等措施,我国交通部门才有可能在2035年左右实现CO_2排放达峰,峰值时的CO_2排放量约为12.3亿t,在2045年左右实现交通能源消费量达峰,峰值水平约为7.4亿t标准煤,在2050年前交通服务周转量很难出现峰值但其增速将十分缓慢。与美国、日本和欧盟交通部门峰值出现年份的发展阶段相比较,我国交通部门在自身快速发展的同时向绿色低碳转型的发展阶段特征十分明显,三个峰值陆续出现的特点更加显著。为此,我国交通部门要全面加强顶层设计,构建综合的交通政策体系,以发展低碳交通技术为重要抓手,充分利用好市场机制的减排手段,全面提升公众的低碳出行意识,进而加速我国交通部门CO_2排放峰值的早日到来。  相似文献   
32.
基于Aura/OMI卫星资料,分析了上海地区2007—2016年近十年对流层低层O_3浓度(0~3 km)、SO_2柱浓度和硫酸盐气溶胶光学厚度(0~2 km)时空演变特征.结果表明,近十年来上海地区臭氧浓度总体呈现上升的趋势,最低值在2008年,为31.57μg·m~(-3),最高值在2016年,浓度为40.72μg·m~(-3);O_3季节变化明显,夏季高、春秋次之、冬季低.十年来,硫酸盐气溶胶污染先减少后增加,2007年硫酸盐气溶胶(AOD=0.81)污染最为严重,占近十年硫酸盐气溶胶发生频率的16.41%,2010年污染最轻(AOD=0.68),比2007年下降了16.12%,且硫酸盐气溶胶污染频率为7.68%,但在2013年以后,硫酸盐气溶胶污染又出现增长趋势;污染季节特征与O_3相同,这主要是因为夏季阳光充足有利于大气光化学反应的进行,从而使O_3和硫酸盐气溶胶等光化学产物的浓度升高.SO_2浓度在2007—2014年总体呈现下降的变化趋势,且下降趋势明显,最低值(2014年)比最高值(2007年)降低了52.76%,但在2014年后SO_2浓度略有反弹;SO_2污染主要集中在冬季.  相似文献   
33.
王海林  杨涛  聂磊  方莉  张中申  郝郑平 《环境科学》2021,42(12):5574-5584
在工业源挥发性有机物(VOCs)污染得到有效控制后,包括汽修业在内的生活源VOCs污染问题开始凸显.通过对我国汽修业的行业整体现状、VOCs排放组分和排放水平进行了梳理分析,在北京实地调研和检测的基础上估算了我国汽修业VOCs整体排放量约为91.02万t;其次,对汽修企业VOCs治理现状进行了分析和总结:对于漆雾前处理而言,组合式干式过滤法最为有效,现阶段VOCs废气治理技术以等离子、UV光解和活性炭吸附等处理方式为主,部分省市吸附处理法占比均超过50%,但更换不及时,去除效率普遍偏低;再次,系统梳理了国内外汽修涉VOCs原辅料中VOCs限值要求和我国现有各省市汽修行业VOCs排放标准,中国水性涂料中底漆和面漆VOCs含量限值要求远高于国外,国内汽修行业VOCs排放标准限值以北京、江苏和上海这3个省市最为严格,均为20 mg·m-3.最后,归纳提出了汽修业VOCs整体治理技术路线:对于规模以上汽修企业或区域整体治理而言,现阶段可选择"面漆水性化替代+集中钣喷中心+转轮吸附浓缩-催化燃烧脱附再生"的治理方案,对于较为分散且规模较小的汽修企业,VOCs防治宜采用"面漆水性化替代+活性炭分散吸附-共享式催化燃烧脱附再生"的治理技术路线.  相似文献   
34.
方莉  何丽娟  郝润  聂磊  王海林 《环境工程》2022,40(1):123-127+147
煤炭的铁路运输是我国能源供给和调控的主要方式,但针对运输过程中煤粉尘遗洒对环境影响的相关研究较少。以大秦铁路为研究对象,对其在北京境内煤粉尘遗洒对大气、水、土的影响开展研究。结果表明:当有列车经过时,环境空气中可吸入颗粒物(PM10)的浓度明显上升,并呈周期性波动,其中城区点位PM10最高值为212μg/m3,隧道口点位PM10最高值为3290μg/m3,运输过程中煤粉尘对周边空气质量的影响随着距离铁路的增加而急速衰减;煤粉尘的传输沉降导致监测附近点河水中的SS明显增加;此外,受煤粉尘污染,监测点附近表层土土壤样品呈弱酸性,且Cr、Cd、Pb等重金属含量均高于背景值。根据初步估算,大秦铁路在运输过程中煤粉尘排放总量为3441.46 t/a,在北京境内煤粉尘排放量为579.73 t/a。结合各种工艺的优缺点和适用性,建议采取分段龙门吊式喷淋技术,并针对喷淋抑尘剂法提出改进建议,加强铁路运输段煤粉尘治理,减少污染排放。  相似文献   
35.
高美平  邵霞  聂磊  王海林  安小栓 《环境科学》2019,40(3):1152-1162
VOCs是国家重要空气污染物,其排放控制是大气污染防治的重要内容,建筑涂料是我国大气VOCs的重要来源.由于经济的发展及城镇化水平提高,住宅及其他房屋建筑施工面积居高不下,对建筑涂料的需求不断增加,建筑涂料VOCs污染受到越来越多的关注,但有关建筑涂料VOCs排放因子及量化其排放量的研究相对较少.本文建立一套自下而上的建筑涂料VOCs排放清单估算方法,通过实测建筑涂料中VOCs及总结梳理国内有关建筑涂料VOCs含量的相关研究,获取了各类型建筑涂料VOCs排放因子,结合建筑涂料使用量,编制了我国2013~2016年建筑涂料VOCs排放清单.结果表明:①水性内墙涂料VOCs排放因子为24. 63 g·kg~(-1),水性和溶剂型外墙涂料分别为17. 5 g·kg~(-1)和298. 8 g·kg~(-1),水性、反应固化型和溶剂型防水涂料分别为2. 75、87. 86和400 g·kg~(-1),水性、无溶剂型与溶剂型地坪涂料分别为86. 2、25. 24和317 g·kg~(-1),水性和溶剂型防腐涂料分别为31. 95 g·kg~(-1)和464. 61 g·kg~(-1),水性与溶剂型防火涂料分别为59. 7 g·kg~(-1)和347. 2 g·kg~(-1).②2013~2016我国建筑涂料使用VOCs排放量分别为25. 59万t、28. 75万t、31. 97万t和34. 8万t,呈增长趋势.③2016年建筑涂料使用排放VOCs 34. 8万t中,地坪涂料贡献率最大,排放量为7. 87万t,占22. 61%,其次是外墙涂料排放量为6. 49万t,占18. 65%,防火和防腐涂料作为功能性涂料,排放量分别为6. 45万t和5. 08万t,分别占18. 53%与14. 6%,防水涂料和内墙涂料排放量分别为4. 61万t和4. 3万t,分别占13. 25%和12. 36%.④2016年水性建筑涂料使用量为488. 94万t,VOCs排放量为9. 79万t,VOCs平均排放因子为20. 02 g·kg~(-1),溶剂型建筑涂料使用量为63. 65万t,VOCs排放量为22. 72万t,VOCs平均排放因子为356. 95 g·kg~(-1),减少溶剂型涂料的使用有利于消减VOCs排放,建筑涂料进一步水性化是降低VOCs排放的趋势.⑤在空间分布上,建筑涂料使用VOCs排放主要集中在山东、江苏、浙江、河南、四川、广东以及河北等人口数量多的省份,山东省排放量最大,约占9. 36%,江苏省次之,约占8. 54%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号