首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   9篇
  国内免费   13篇
环保管理   3篇
综合类   32篇
污染及防治   3篇
评价与监测   8篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2015年   5篇
  2014年   11篇
  2013年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
31.
准确预报城市未来空气质量对公众及时掌握未来空气质量,对管理部门应对重污染天气和开展区域大气污染联防联控具有重要作用。本文主要介绍了目前主要的空气质量预报方法,统计预报、数值预报和人工研判综合预报,分析了不同预报方法和特点以及国内应用研究情况,为各地开展空气质量预报工作和研究提供参考。  相似文献   
32.
为掌握重庆市主城区机动车排放情况及其对排放的定量影响,于重庆市机动车类型分布、技术水平、行驶情况进行数据采集的基础上,利用Arc GIS系统建立了重庆市主城区2105年1 km×1 km的高时空分辨率移动眼排放清单。结果表明,2015年,重庆市主城区机动车污染物VOCs的年排放量为6.26×10~4t/a,主要来自线源道路的排放,排放量为5.84×10~4t/a,其排放量占移动源总排放量的93.08%,与人群出行规律有极大的相关性。  相似文献   
33.
2022年8月成都和重庆呈现显著的臭氧(O3)污染差异,成都O3污染天高达20 d,重庆无O3污染天,本文从前体物排放水平和气象条件分析此差异的影响因素.结果表明:(1)成都52种挥发性有机物(VOCs)(包含26种烷烃、 16种芳香烃和10种烯烃)的总体积分数(18.8×10-9)是重庆(6.6×10-9)的2.8倍,总O3生成潜势(OFP=51.2×10-9)是重庆(25.0×10-9)的2.0倍,总·OH损耗速率(L·OH=3.9 s-1)是重庆(2.3 s-1)的1.7倍.成都OFP前3是乙烯、间/对-二甲苯和异戊二烯;重庆OFP前3是异戊二烯、乙烯和丙烯.重庆仅烯烃对O3的贡献率是60.7%,而成都烯烃和芳香烃的OFP分别是重庆的1.6倍和2.9倍.综上,成都VOCs总体积分数、大气光化学活性和O3  相似文献   
34.
2020年12月底,以生态旅游业为主的重庆市渝东南地区出现了一次较为罕见的PM2.5污染过程,持续时间长且污染程度重。以渝东南地区武隆区为例,应用污染特征雷达图、后向轨迹模型及潜在源污染贡献估算等方法分析了本次PM2.5污染的特征及来源,结果表明:(1)在污染前期主要受扬尘、燃煤和机动车等污染排放影响,污染源直接排放贡献较大;中、后期污染受二次颗粒物影响显著,扬尘影响也较为明显。(2)污染期间的气流轨迹均为短距离输送,轨迹主要来自东北方向(65%)。(3)除自身污染排放贡献外,渝东北地区和主城都市区是武隆区PM2.5污染的主要潜在源区,对武隆区传输贡献占比超50%。  相似文献   
35.
为探究工业区大气VOCs污染特征,促进工业区VOCs污染防控,于2020年12月利用苏玛罐在西南地区某大型综合工业区及周边市区的3个观测站点采集VOCs样品,研究了工业区和周边市区的VOCs污染特征、来源解析并开展健康风险评估.结果表明,工业区A点、工业区B点和市区点φ(TVOCs)均值分别为105.25×10 9、2...  相似文献   
36.
重庆市黑碳气溶胶特征及影响因素初探   总被引:7,自引:1,他引:6  
为了解影响重庆市黑碳气溶胶(Black Carbon,BC)污染的主要气象因素及BC的主要来源,对2012年重庆市BC与主要气象因素及燃煤、机动车产生的SO2、NO x进行了相关性分析,并分析了24 h内BC浓度变化与车流量的关系.结果显示,2012年,重庆市BC年日均浓度为(5.9±2.7)μg·m-3,占PM2.5年日均浓度的7.2%,BC小时浓度较大值出现在6:00—10:00及20:00—23:00.气温和相对湿度对BC浓度的影响不大.影响BC浓度的主要气象因素为风速,风速为0.5~1.5 m·s-1时,BC浓度随着风速增大而减小;当风速超过2 m·s-1时,BC浓度随风速增大而增加.BC与SO2、NO x的相关系数分别为0.374和0.542(p0.01),表明重庆市BC与SO2、NO x来源相同,即燃煤和机动车尾气排放,且受机动车排放的影响更大.BC浓度24 h变化与车流量的关系表明,BC浓度日变化除了受到气象条件的影响外,还受机动车尤其是柴油重型车的影响,因此,需重点控制柴油机动车以控制重庆市区BC污染.  相似文献   
37.
利用被动采样技术在重庆市主城区117个网格内连续测量SO2和NOx的浓度,测量周期为1 a。采用聚类分析获取SO2和NOx的空间分布特征。结果表明:SO2和NOx平均浓度为51.81μg/m3和34.93μg/m3;通过SO2和NOx被动采样数据与自动监测数据的相关性分析,发现二者的相关系数r2分别为0.838和0.860;在垂直高度上的浓度分布情况上,SO2分布层出现了一个中间污染层,NOx的分布随着高度递增,浓度减小;在水平方向的浓度分布情况上,SO2主要集中在重庆主城区的正南方和东北方向,主要是受工业源的影响;NOx主要集中在重庆市主城区的正南方,主要受工业源和交通源的影响。  相似文献   
38.
以2019年3—4月臭氧(O3)污染小高峰为例,应用空气质量模型CAMx-DDM法分析了成渝地区O3浓度对人为源前体物排放敏感性,并用2020年"新冠"疫情防控及生产恢复导致的污染排放同比变化情景进行模拟验证.模拟结果表明成渝地区O3对NOx的敏感性为负、对VOCs的敏感性为正,其中,重庆市主城区、主城区以西地区、川南城市群和成都平原西部地区敏感性较高,与其自身污染排放源分布密集有关.以典型城市重庆市主城区为例,2019年3—4月O3小时浓度对NOx和VOCs的敏感性平均值分别为-19.14 μg·m-3和7.25 μg·m-3,两者表现出相反的日变化规律,且主要受到本地及周边区域的影响,模拟结果显示在所有区域VOCs排放均削减25%的情况下,3月和4月月均O3日最大8 h浓度分别下降2.62 μg·m-3和3.59 μg·m-3.敏感性模拟得到2020年3月四川省和重庆市NOx排放量同比下降8.00%和22.40%,VOCs同比下降1.00%和7.92%;4月NOx排放量同比上升5.00%和9.50%,四川省VOCs同比持平,重庆市上升3.63%,与同期"新冠"疫情防控及生产恢复导致的实际排放情况非常一致.  相似文献   
39.
万州城区夏季、冬季PM_(2.5)中有机碳和元素碳的浓度特征   总被引:5,自引:2,他引:3  
在位于三峡库区腹心的山地城市万州城区采集夏季和冬季PM2.5样品,采用热光反射法(Thermal Optical Reflection,TOR)测定了PM2.5中有机碳(OC)和元素碳(EC)的浓度,探讨了其污染特征及来源.结果发现,OC和EC在夏季的平均浓度分别为(7.09±1.86)μg·m-3和(3.49±0.64)μg·m-3;冬季分别为(16.82±6.87)μg·m-3和(6.21±2.06)μg·m-3,高于夏季,这可能与冬季当地居民生物质燃烧的贡献显著增加有关.冬季OC和EC显著线性相关(r=0.89),表明冬季两者的一次污染来源相近.冬季PM2.5中总碳(TC)和水溶性K+含量的相关性(r=0.88)高于夏季(r=0.69),表明冬季生物质燃烧对碳污染贡献显著.利用OC/EC比值法对二次有机碳(SOC)进行估算,SOC的浓度均值在夏季为(2.17±1.46)μg·m-3,占OC比例为28.18%±13.85%;冬季为(4.46±3.69)μg·m-3,占OC的23.13%±12.30%.通过计算PM2.5中8个碳组分丰度,初步判断机动车尾气排放和生物质燃烧是万州城区碳组分的主要来源.  相似文献   
40.
为进一步提高PM2.5污染源解析的准确性,研究提出一种基于受体和化学传输的综合源解析模型(CTM-RM),并以重庆冬季一次典型PM2.5污染过程为例(2019年1月21~27日)开展模型评估与应用.结果表明,观测期间基于CTM-RM获得的模拟误差平方值较CAMx/PSAT低84.58%,PM2.5及其化学组分浓度的模拟相对误差值较CAMx/PSAT下降15.69%~92.86%;此外,CTM-RM还可以获取重庆市PM2.5污染源贡献的时空分布特征.观测期间,主城区PM2.5农业源、工业源、电力源、民用源、交通源和其他源的调整因子R值分别为1.39±0.38、 1.54±0.48、 1.01±0.13、 1.02±0.58、 0.86±0.59和0.58±0.67,各污染源R值的累积分布函数差异明显.民用源和工业源是主城区PM2.5的主要污染源(46.23%和28.23%).与其他源不同,污染日交通源贡献率(8.62%)同比清洁日显著上升(P<0.00...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号