首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   3篇
  国内免费   14篇
废物处理   4篇
环保管理   39篇
综合类   53篇
基础理论   50篇
污染及防治   39篇
评价与监测   11篇
社会与环境   4篇
  2023年   5篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   10篇
  2014年   10篇
  2013年   13篇
  2012年   7篇
  2011年   15篇
  2010年   5篇
  2009年   18篇
  2008年   21篇
  2007年   14篇
  2006年   10篇
  2005年   5篇
  2004年   2篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1997年   4篇
  1995年   2篇
  1993年   4篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1980年   2篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
41.
• A dual “waste-to-resource” application of FO was proposed. • Performance of sea salt bittern as an economic FO draw solution was evaluated. • High quality struvite recovery from black water using FO was demonstrated. • Feed pH is a key factor to control the form of recovered phosphorous. A dual “waste-to-resource” innovation in nutrient enrichment and recovery from domestic black water using a sea salt bittern (SSB)-driven forward osmosis (FO) process is proposed and demonstrated. The performance of SSB as a “waste-to-resource” draw solution for FO was first evaluated. A synthetic SSB-driven FO provided a water flux of 25.67±3.36 L/m2⋅h, which was 1.5‒1.7 times compared with synthetic seawater, 1 M NaCl, and 1 M MgCl2. Slightly compromised performance regarding reverse solute selectivity was observed. In compensation, the enhanced reverse diffusion of Mg2+ suggested superior potential in terms of recovering nutrients in the form of struvite precipitation. The nutrient enrichment was performed using both the pre-filtered influent and effluent of a domestic septic tank. Over 80% of phosphate-P recovery was achieved from both low- and high-strength black water at a feed volume reduction up to 80%‒90%. With an elevated feed pH (~9), approximately 60%‒85% enriched phosphate-P was able to be recovered in the form of precipitated stuvite. Whereas the enrichment performance of total Kjeldahl nitrogen (TKN) largely differed depending on the strength of black water. Improved concentration factor (i.e., 3-folds) and retention (>60%) of TKN was obtained in the high-nutrient-strength black water at a feed volume reduction of 80%, in comparison with a weak TKN enrichment observed in low-strength black water. The results suggested a good potential for nutrient recovery based on this dual “waste-to-resource” FO system with proper management of membrane cleaning.  相似文献   
42.
● Blackwater is the main source of organics and nutrients in domestic wastewater. ● Various treatment methods can be applied for resource recovery from blackwater. ● Blackwater treatment systems of high integration and efficiency are the future trend. ● More research is needed for the practical use of blackwater treatment systems. Blackwater (BW), consisting of feces, urine, flushing water and toilet paper, makes up an important portion of domestic wastewater. The improper disposal of BW may lead to environmental pollution and disease transmission, threatening the sustainable development of the world. Rich in nutrients and organic matter, BW could be treated for resource recovery and reuse through various approaches. Aimed at providing guidance for the future development of BW treatment and resource recovery, this paper presented a literature review of BWs produced in different countries and types of toilets, including their physiochemical characteristics, and current treatment and resource recovery strategies. The degradation and utilization of carbon (C), nitrogen (N) and phosphorus (P) within BW are underlined. The performance of different systems was classified and summarized. Among all the treating systems, biological and ecological systems have been long and widely applied for BW treatment, showing their universality and operability in nutrients and energy recovery, but they are either slow or ineffective in removal of some refractory pollutants. Novel processes, especially advanced oxidation processes (AOPs), are becoming increasingly extensively studied in BW treatment because of their high efficiency, especially for the removal of micropollutants and pathogens. This review could serve as an instructive guidance for the design and optimization of BW treatment technologies, aiming to help in the fulfilment of sustainable human excreta management.  相似文献   
43.
Constructed wetlands(CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural(environmental)systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice,applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand(BOD) and total suspended solid(TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid(TSS)(91.3%), chemical oxygen demand(COD)(84.3%), and nitrogen(i.e.,80.7% for ammonium(NH)4-N, 80.8% for nitrate(NO)3-N, and 75.4% for total nitrogen(TN))as compared to other wetland systems. Vertical subsurface flow(VSSF) CWs removed TSS(84.9%), BOD(87.6%), and nitrogen(i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN)more efficiently than horizontal subsurface flow(HSSF) CWs, while HSSF CWs(69.8%)showed better total phosphorus(TP) removal compared to VSSF CWs(60.1%). Floating treatment wetlands(FTWs) showed comparable removal efficiencies for BOD(70.7%),NH4-N(63.6%), and TP(44.8%) to free water surface(FWS) CW systems.  相似文献   
44.
Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural (environmental) systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice, applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand (BOD) and total suspended solid (TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid (TSS) (91.3%), chemical oxygen demand (COD) (84.3%), and nitrogen (i.e., 80.7% for ammonium (NH)4-N, 80.8% for nitrate (NO)3-N, and 75.4% for total nitrogen (TN)) as compared to other wetland systems. Vertical subsurface flow (VSSF) CWs removed TSS (84.9%), BOD (87.6%), and nitrogen (i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN) more efficiently than horizontal subsurface flow (HSSF) CWs, while HSSF CWs (69.8%) showed better total phosphorus (TP) removal compared to VSSF CWs (60.1%). Floating treatment wetlands (FTWs) showed comparable removal efficiencies for BOD (70.7%), NH4-N (63.6%), and TP (44.8%) to free water surface (FWS) CW systems.  相似文献   
45.
Bacteria thriving in underground systems, such as karsts, adapt to use a variety of nutrients. Most of these nutrients derive from superficial processes. This study shows that bacteria are able to differentially induce carbonate precipitation or dissolution depending on the availability of nutrients for growth. Different bacterial strains isolated from caves, representing the most common components of these microbial communities, were cultured with different carbon and nitrogen sources (e.g., acetate, glucose, peptone, humic acids) and induced changes in pH were measured during growth. Carbonate can either precipitate or dissolve during bacterial growth. The induction of carbonate precipitates or their dissolution as a function of consumption of specific carbon sources revealed the existence of an active nutrient cycling process in karsts and links nutrients and environmental conditions to the existence of a highly significant carbon sink in subterraneous environments.  相似文献   
46.
The effects of additives such as apple pomace, bentonite and calcium superphosphate on swine manure composting were investigated in a self-built aerated static box (90 L) by assessing their influences on the transformation of nitrogen, carbon, phosphorous and compost maturity. The results showed that additives all prolonged the thermophilic stage in composting compared to control. Nitrogen losses amounted to 34–58% of the initial nitrogen, in which ammonia volatilization accounted for 0.3–4.6%. Calcium superphosphate was helpful in facilitating composting process as it significantly reduced the ammonia volatilization during thermophilic stage and increased the contents of total nitrogen and phosphorous in compost, but bentonite increased the ammonia volatilization and reduced the total nitrogen concentration. It suggested that calcium superphosphate is an effective additive for keeping nitrogen during swine manure composting.  相似文献   
47.
Gren IM  Destouni G 《Ambio》2012,41(2):151-160
Successful implementation of an international nutrient abatement agreement, such as the Baltic Sea Action Plan (BSAP), requires consistent understanding of the baseline nutrient loads, and a perception of acceptable costs and fairness in targeted reductions of these base line loads. This article presents a general framework for identifying the implications of divergence between different nutrient load quantification approaches, with regard to both cost and fairness criteria outcomes, for the international agreement to decrease nutrient loads into the Baltic Sea as presented in the BSAP. The results indicate that even relatively small divergence in the nutrient load quantification translates into relatively large differences in abatement cost for different Baltic Sea countries. A robust result, irrespective of differences in nutrient load assessments, is a conflict between abatement cost effectiveness and fairness, with relatively poor countries facing heavy abatement cost burdens for cost-effective international load abatement.  相似文献   
48.
This article proposes to use nutrient-orientated environmental efficiency (EE) measures to construct a nutrient total factor productivity index (NTFP). Since nutrient-orientated EE measures are consistent with the materials balance principle, NTFP index is superior to other existing TFP indexes. An empirical study on the environmental performance of an agricultural sector in 30 OECD countries from 1990 to 2003 yielded several important findings. First, these countries should be able to produce current outputs with at least 50% less aggregate eutrophying power, implying that they should have been able to substantially reduce the potential for eutrophication. Second, traditional TFP has grown by 1.6% per annum due to technical progress; however, there are lags in the responses of several countries to this technical progress. Third, environmental TFP has grown at a slower rate than traditional TFP growth due to reductions in nutrient-orientated allocative efficiency. Finally, changes in input combinations could have significantly improved environmental efficiency and productivity. These findings favor policy interventions and faster technological transfer to improve environmental performance.  相似文献   
49.
The Yellow River Basin (YRB) plays a very important role in China's economic and social development and ecological security. In particular, the ecosystem of the YRB is sensitive to climate change. However, the change of nutrient fluxes in this region during the past years and its main driving forces remain unclear. In this study, a hydrologic model R System for Spatially Referenced Regressions on Watershed Attributes (RSPARROW) was employed to simulate the spatio-temporal variations in the fluxes of total nitrogen (TN) and total phosphorus (TP) during the period of 2006-2017. The results suggested that the TN and TP loads increased by 138% and 38% during 2006-2014, respectively, and decreased by 66% and 71% from 2015 to 2017, respectively. During the period of 2006-2017, the annual mean fluxes of TN and TP in the YRB were in the range of 3.9 to 591.6 kg/km2/year and 1.7 to 12.0 kg/km2/year, respectively. TN flux was low in the upstream area of the Yellow River, and presented a high level in the middle and lower reaches. However, the flux of TP in Gansu and Ningxia section was slightly higher than that in the lower reaches of the Yellow River. Precipitation and point source are the key drivers for the inter-annual changes of TN loads in most regions of the YRB. While the inter-annual variations of TP loads in the whole basin are mainly driven by the point source. This study demonstrates the important impacts of climate change on nutrient loads in the YRB. Moreover, management measures should be taken to reduce pollution sources and thus provide solid basis for control of nitrogen and phosphorus in the YRB.  相似文献   
50.
洪湖是江汉平原重要的淡水水体。为了揭示洪湖营养盐时空分布特征和原因,开展了对洪湖为期一年的采样调查,连续采集12个月水样和一次沉积物样品,测定样品中营养盐含量。结果表明:(1)洪湖水体营养盐污染水平较高,除氨氮(NH_4~+-N)外,总氮(TN)、总磷(TP)和高锰酸盐指数(CODMn)难以达到Ⅱ类。(2)空间上有机物污染浓度呈现南高北低的特征,氮磷呈现西高东低的特征;时间上冬季水体氮磷平均浓度最高,夏季氮磷平均浓度最低; COD_(Mn)和氮磷变化相反。(3)表层沉积物有机质(OM)、总氮(TN)、总磷(TP)含量范围分别是16.3~180 g/kg,0.704~7.64 g/kg,0.312~0.801 g/kg。总氮和有机质空间分布相似,南部东北部西北部;总磷空间分布特征,西北部东北部南部。洪湖水质时空变化受内源和外源共同影响。内源主要来自沉积物和水生植物,外源输入主要包括四湖总干渠汇入和人类活动产生的污染。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号