首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   4篇
  国内免费   12篇
环保管理   3篇
综合类   15篇
基础理论   20篇
污染及防治   6篇
评价与监测   1篇
灾害及防治   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1992年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
41.
基于高通量定量PCR研究城市化小流域微生物污染特征   总被引:2,自引:0,他引:2  
水体微生物污染(包括致病菌、病毒、寄生虫)会引起多种传染病和寄生虫病,对生产生活用水安全和人体健康造成重要威胁。本研究应用基于Taq Man探针的高通量荧光定量PCR技术对厦门市后溪流域冬季微生物污染进行检测,包含了5种粪便污染源(人源、反刍动物源、猪源、家禽源、狗源)微生物源示踪分子标记物与12种病原微生物。结果表明,该流域在上游及水库5个位点没有粪便污染,仅在其中一个水库位点检测出棘阿米巴,微生物污染极小;中下游检测出人类、反刍动物、猪、家禽、狗粪便污染,并且检测出产气荚膜梭菌、肠聚集性大肠杆菌、肠毒素型大肠杆菌、幽门螺杆菌、霍乱弧菌、副溶血弧菌、棘阿米巴、克雷伯氏肺炎杆菌等病原菌,其中流经旧城区居民生活生产区水样微生物污染严重,下游新城区微生物污染较小。这些结果暗示着城市人类活动是流域微生物污染主要来源,应从污染源头加强微生物污染控制。  相似文献   
42.
Microbial contamination of fresh produce can present a severe risk to public health. By conducting a rigorous survey of irrigation waters, the impacts of fecal contamination on the quality of produce could be assessed. In this study, surface waters were observed to be contaminated with Escherichia coli, Salmonella spp., and somatic coliphages. Culture methods show that out of 373 irrigation water, soil, and vegetable samples collected for a 1-year period, 232 (62.20%) were found positive for E. coli, 213 (57.26%) for somatic coliphages, and 2 (0.53%) for Salmonella spp. Out of 190 water samples, 167 (87.9%) were found to have E.coli, 174 (91.6%) have somatic coliphages, and 1 (0.5%) with Salmonella spp. In soil samples, 36 of 91 (39.6%) have E. coli, 31 (34.0%) have somatic coliphages, and none with Salmonella spp. Lastly, out of 92 vegetable samples, 29 (31.5%), 8 (8.7%), and 1 (1.1%) were found to have E. coli, somatic coliphages, and Salmonella spp., respectively. Molecular analysis confirmed the presence of bacterial contaminants. Seasonal weather conditions were noted to have an effect on the presence and number of these fecal indicator organisms. The observed data suggest that contaminated irrigation water may greatly affect the quality of fresh produce from these agricultural operations.  相似文献   
43.
At local scales, infectious disease is a common driver of population declines, but globally it is an infrequent contributor to species extinction and endangerment. For species at risk of extinction from disease important questions remain unanswered, including when does disease become a threat to species and does it co‐occur, predictably, with other threats? Using newly compiled data from the International Union for Conservation of Nature (IUCN) Red List, we examined the relative role and co‐occurrence of threats associated with amphibians, birds, and mammals at 6 levels of extinction risk (i.e., Red List status categories: least concern, near threatened, vulnerable, endangered, critically endangered, and extinct in the wild/extinct). We tested the null hypothesis that the proportion of species threatened by disease is the same in all 6 Red List status categories. Our approach revealed a new method for determining when disease most frequently threatens species at risk of extinction. The proportion of species threatened by disease varied significantly between IUCN status categories and linearly increased for amphibians, birds, and all species combined as these taxa move from move from least concern to critically endangered. Disease was infrequently the single contributing threat. However, when a species was negatively affected by a major threat other than disease (e.g., invasive species, land‐use change) that species was more likely to be simultaneously threatened by disease than species that had no other threats. Potential drivers of these trends include ecological factors, clustering of phylogenetically related species in Red List status categories, discovery bias among species at greater risk of extinction, and availability of data. We echo earlier calls for baseline data on the presence of parasites and pathogens in species when they show the first signs of extinction risk and arguably before. La Amenaza de Enfermedades Incrementa a Medida que las Especies se Aproximan a la Extinción  相似文献   
44.
从越冬期淡水白鲳病鱼的肝脏内分离纯化到一细菌菌株CBZHG4,用n(cell=10^5~10^6mL^-1的菌液浓度在腹腔注射试验鱼后48h内全部死亡,证实为病原菌。CBZHG4经API 20NE系统鉴定为嗜水性气单胞菌(Aeromonas hydrophila),对卡那霉素多种抗生素和呋喃类药物敏感,对青霉素类、先锋霉素等抗生素、磺胺类药物和0/129不敏感。表2参2  相似文献   
45.
Disease due to waterborne pathogens, whether in outbreak or endemic form, continues to be a problem in both the developing and the developed world. Control of waterborne disease requires accurate assessment of the pathogen dose-response relation and of likely patterns of exposure. Heretofore, risk assessment of pathogen exposure has been done on the basis of several standard biologically plausible dose-response models. In this paper, the problem of estimating the long-term risk from waterborne pathogens is put into a rigorous mathematical and statistical framework. The implications of the biologic assumptions embedded in the dose-response models (e.g., heterogeneity in susceptibility) are fully considered, as are the likely patterns of long-term exposure (e.g., temporal correlations within individuals and heterogeneity of mean exposures). Two types of long-term risk are described, risk per person-time and risk per individual where the latter is the risk of infection at least once. The effects on these risks of heterogeneity in individuals susceptibilities and mean exposures and of temporal correlations of exposures are described, both theoretically and empirically using a sample of experimental data sets. Because different models with equal plausibility may give very different results in the low-dose range but fit the experimental data equally well, we apply the model uncertainty algorithm of Buckland et al. (1997) on example data sets. Finally, the computational aspects of the general problem, which are often challenging, are discussed along with the conditions under which simplifying approximations may be utilized.  相似文献   
46.
F-RNA噬菌体及其作为水中肠道病毒指示物的研究进展   总被引:7,自引:0,他引:7  
李梅  胡洪营 《生态环境》2005,14(4):585-589
城市污水的再生利用是缓解水资源紧张、减少水污染和改善生态环境的有效途径。污水及其回用水中的肠道病毒对人体健康的风险日益受到关注。直接检测水中肠道病毒的操作复杂、安全性差、时间长、需要专门的技术和设备,因此需要寻找合适的指示生物,以实现对水中肠道病毒的及时检测和风险评价。F-RNA噬菌体是通过性菌毛感染雄性大肠杆菌的一类RNA细菌病毒,在污水中普遍存在,在大小、形态结构及对环境条件和水处理过程的抗性与肠道病毒相似,被认为是水中肠道病毒的合适的指示生物。文章介绍了F-RNA噬菌体在环境及污水中的分布、存活和去除特性、检测方法及作为水中肠道病毒指示生物的研究进展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号