首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   31篇
  国内免费   57篇
安全科学   54篇
废物处理   10篇
环保管理   11篇
综合类   139篇
基础理论   28篇
污染及防治   37篇
评价与监测   7篇
社会与环境   2篇
灾害及防治   8篇
  2023年   2篇
  2021年   1篇
  2020年   9篇
  2019年   26篇
  2018年   24篇
  2017年   15篇
  2016年   18篇
  2015年   20篇
  2014年   21篇
  2013年   12篇
  2012年   23篇
  2011年   24篇
  2010年   9篇
  2009年   14篇
  2008年   19篇
  2007年   18篇
  2006年   20篇
  2005年   13篇
  2004年   8篇
排序方式: 共有296条查询结果,搜索用时 15 毫秒
51.
以一维河流单种污染物的水污染协同控制理论为基础,以汉江武汉段水质达到国家III级为目的,探讨了河流的水污染控制量。根据各排污口的实测CODCr、BOD5、NH3-N浓度和排放流量,结合河流的流量和水质标准,得出汉江武汉段的水污染协同控制量。计算结果表明,汽配排污口BOD5排放量需削减198 t/a,汉正下河街排污口BOD5排放量需削减617 t/a,其它排污口BOD5排放量在允许值范围以内;各排污口的CODCr排放量均在允许值范围以内;国棉三厂排污口NH3-N排放量需削减57 t/a,汉正下河街排污口NH3-N排放量需削减95 t/a,其它排污口NH3-N排放量在允许值范围以内。该方法充分考虑各污染源合理利用环境的自然降解能力,比简单要求每个污染源都达标排放更合理,对各污染源也更加公平,也容易被排污企业接受,具有一定的实用价值。  相似文献   
52.
有机化改性海泡石对六六六吸附性能的探讨   总被引:1,自引:0,他引:1  
分别采用阴阳离子表面活性剂对海泡石进行有机化改性处理,并对改性海泡石进行了吸附六六六实验.结果表明,未经有机化改性的海泡石对六六六各异构体去除能力由小到大依次为:γ-六六六(12.66%)、δ-六六六(12.79%)、α六六六(17.35%)、β-六六六(33.57%).经DOSO3Na有机化改性的海泡石对六六六各异构体的去除能力由小到大依次为:β-六六六、γ δ-六六六、α-六六六.经CTMAB有机化改性的海泡石对六六六各异构体的去除能力由小到大依次为:β-六六六、α-六六六、γ δ-六六六.有机化改性海泡石使体系中β-六六六大幅度增加,可能为有机化海泡石催化α、γ、δ各异构体向β异构体转化.  相似文献   
53.
基于人工蜂群算法的BP双隐含层神经网络水质模型   总被引:1,自引:0,他引:1  
采用人工蜂群算法优化BP神经网络的初始权值和阈值,同时采用双隐含层来提高网络精度,选取DO、IMn、COD、BOD5和NH3-N作为评价指标,建立一个基于人工蜂群算法的BP双隐含层神经网络模型,并应用该模型对2012年黄河水系下河沿断面的各月监测数据进行水质评价,同时与BP神经网络、模糊层次评价方法作比较。结果表明:基于人工蜂群算法的BP双隐含层神经网络在水质评价时,均方误差小,多次运行的结果始终一致,评价结果合理有效。  相似文献   
54.
对渭南主城区道路积尘负荷进行了实测,并计算了2018年不同道路类型和不同车型的交通扬尘颗粒物排放量。结果表明:渭南主城区支路积尘负荷最大,为1.79g/m~2,高速积尘负荷最小,为0.05g/m~2,洒水作业能有效降低积尘负荷;渭南主城区道路交通扬尘PM_(2.5)和PM_(10)的年排放量分别为1 149.65、4 751.88t;小型客车引起的交通扬尘颗粒物排放在城市道路(包括主干道、次干道、支路)和国省道(包括国道和省道)上的分担率最高,分别为59.49%、41.46%,重型货车在高速上的分担率最高,为63.35%;城市道路交通扬尘颗粒物排放有明显的双峰日变化规律,而国省道和高速不明显。  相似文献   
55.
在西安市某文教区屋面排水立管设径流采样点,雨期采用人工时间间隔采样法采集径流水样,对2016年8月—2016年11月3场屋面径流SS、COD、TN、NH_3-N、TP、浊度、Pb、Zn、Cu、Cd、Ni、Cr等污染指标进行监测,界定了初期雨水的概念并根据屋面初期雨水水质、水量特征、雨水斗构造设计屋面雨水截污装置,研究了该截污装置的透水性能、工作状态、截污效果和清洗更换周期。结果表明:将暴雨次降雨前30~40min、大雨和小雨次降雨前40~50 min雨水定义为初期雨水;土工布单位面积质量越大,透水能力越小,且其过滤通量与过滤水头呈线性关系;在不发生溢流的情况下,500 g·m~(-2)的土工布制成的截污装置过滤出水可满足《生活杂用水水质标准》(GB/T 18920-2002)要求;为避免5年一遇的暴雨下屋面积水,截污装置上部溢流孔孔口面积至少应为0.015 4 m~2,须至少保证有效过滤区高度为568 mm。研究为缓解西安等干旱、半干旱地区用水紧张问题提供参考。  相似文献   
56.
磁性分子印迹材料(MMIPs)具有识别性强、化学和物理稳定性高、生物兼容性好、回收简单、可重复使用等优点,已发展成为高亲和性、高选择性分离小分子物质的重要手段.生物大分子,如糖类、蛋白质和核酸等,因其传质阻力大、结构复杂,MMIPs在生物大分子分离方面的研究和应用相对滞后.本文简要介绍了MMIPs技术的原理、制备方法及其在生物医药、环境监测、环境治理等领域的应用现状,并重点综述了MMIPs分离生物大分子方面的最新进展和有待解决的问题,以期为MMIPs在生物大分子分离领域的发展和应用提供参考.  相似文献   
57.
为研究亚硝酸盐型碳、氮、硫同步脱除系统的特性,采用SBBR,以亚硝酸盐、硫化物及乙酸钠为基质,探索6种进水COD/N及5种进水S/N下碳、硫混合亚硝酸盐反硝化过程铵的生成机制。结果表明:在进水COD/N高于2、S/N高于1时,NO_2~--N去除率高达99%;同时,当氧化还原电位(ORP)低于-400 mV时,会出现铵浓度明显升高现象,在此条件下,进水COD/N不变时,较高的S/N会促进铵的生成;控制进水S/N不变,COD/N为3时铵浓度升高最为明显。微生物分析结果表明,该碳、氮、硫混合体系中同时存在硫自养反硝化、异养反硝化及亚硝酸盐异化还原为铵等过程,碳、硫混合亚硝酸盐反硝化过程铵的生成机制可能是低氧化还原电位和过量电子供体存在的情况下亚硝酸盐异化还原为铵的过程。  相似文献   
58.
应用火灾模拟软件PyroSim,对综合管廊电缆舱火灾进行数值模拟,讨论不同断面高宽比对火灾烟气流动、温度和排烟效果的影响。分析得到:舱内温度主要以烟气为载体,火源上部区域温度最高,越往两边温度越低;断面形状影响燃烧速率,高宽比越小燃烧速度越快,顶棚温度越低;距火源较近区域,随着高宽比的减小,温度衰减速率也减小,距火源较远区域,高宽比对温度衰减速率几乎没影响。排烟过程中,下部区域排烟效率高于上部区域且距离送风口越近排烟效果越好。高宽比对于排烟效率影响较大,高宽比越小,其整体排烟效率越高。  相似文献   
59.
潜流人工湿地基质堵塞的研究进展   总被引:1,自引:0,他引:1  
潜流人工湿地是城市污水深度处理和农村污水分散处理的有效技术,但存在的基质堵塞问题因可缩短其使用寿命而极大降低了该技术的经济优势,成为制约其发展的瓶颈和研究的重点.在分析潜流人工湿地基质堵塞影响因素的基础上,探讨了其堵塞的机理和模型,提出了预防措施和恢复对策.前期进水预处理、进行湿地数值模拟和强化运行管理等能有效解决人工湿地堵塞问题.  相似文献   
60.
城市地表径流污染物浓度数学模型的建立及验证   总被引:4,自引:0,他引:4  
针对目前描述城市地表径流污染物排放过程的数学模型不能完全适用于不同降雨过程的情况,本研究建立了一个全新的P/r模型.P/r模型以地表沉积物量(P)与降雨强度(r)的比值为主要参数,描述了降雨过程产生的地表径流中污染物的排放规律.基于对发生在陕西省西安市的3场降雨事件的实测数据的模拟,本研究建立的P/r模型的预测值与实测值的归一化目标函数、相关系数和相关指数均优于Sartor-Boyd冲刷模型.根据对P/r模型进行的不确定性分析,当Nash-Sutcliffe效率系数为0.46时,采用P/r模型对陕西省西安市地表径流中的污染物浓度进行模拟时应采用的最大比浓度常数(Km)和径流冲刷能力半饱和常数(KS)的取值范围分别为0.65~1.35 kg·min·L-1和0.16~0.22kg·min·mm-1·L-1.P/r模型的预测带平均相对宽度(ARIL)为1.21,预测带对实测值的覆盖度为67%.Sartor-Boyd冲刷模型对具有地表径流初期冲刷效应且降雨强度波动较小的降雨事件的模拟结果较好,但对于不具有地表径流初期冲刷效应的降雨事件、间歇性降雨事件及降雨强度波动较大的降雨事件并不适用.本研究建立的P/r模型的适用范围广泛,对于上述Sartor-Boyd冲刷模型不能适用的降雨事件均可适用.与Sartor-Boyd冲刷模型相比,P/r模型能够更好的描述城市地表径流的污染物排放规律.P/r模型的提出能够进一步推动地表径流排污过程数学模型的发展.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号